These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


126 related items for PubMed ID: 27734123

  • 1. Adhesion to sand and ability to mineralise low pesticide concentrations are required for efficient bioaugmentation of flow-through sand filters.
    Samuelsen ED, Badawi N, Nybroe O, Sørensen SR, Aamand J.
    Appl Microbiol Biotechnol; 2017 Jan; 101(1):411-421. PubMed ID: 27734123
    [Abstract] [Full Text] [Related]

  • 2. The potential for bioaugmentation of sand filter materials from waterworks using bacterial cultures degrading 4-chloro-2-methylphenoxyacetic acid.
    Krüger US, Johnsen AR, Burmølle M, Aamand J, Sørensen SR.
    Pest Manag Sci; 2015 Feb; 71(2):257-65. PubMed ID: 24737598
    [Abstract] [Full Text] [Related]

  • 3. A new concept for reduction of diffuse contamination by simultaneous application of pesticide and pesticide-degrading microorganisms.
    Onneby K, Jonsson A, Stenström J.
    Biodegradation; 2010 Feb; 21(1):21-9. PubMed ID: 19557524
    [Abstract] [Full Text] [Related]

  • 4. Degradation of trace concentrations of the persistent groundwater pollutant 2,6-dichlorobenzamide (BAM) in bioaugmented rapid sand filters.
    Albers CN, Feld L, Ellegaard-Jensen L, Aamand J.
    Water Res; 2015 Oct 15; 83():61-70. PubMed ID: 26125500
    [Abstract] [Full Text] [Related]

  • 5. Protozoa graze on the 2,6-dichlorobenzamide (BAM)-degrading bacterium Aminobacter sp. MSH1 introduced into waterworks sand filters.
    Ellegaard-Jensen L, Albers CN, Aamand J.
    Appl Microbiol Biotechnol; 2016 Oct 15; 100(20):8965-73. PubMed ID: 27437935
    [Abstract] [Full Text] [Related]

  • 6. Mecoprop (MCPP) removal in full-scale rapid sand filters at a groundwater-based waterworks.
    Hedegaard MJ, Arvin E, Corfitzen CB, Albrechtsen HJ.
    Sci Total Environ; 2014 Nov 15; 499():257-64. PubMed ID: 25194903
    [Abstract] [Full Text] [Related]

  • 7. Draft Genome Sequence of MCPA-Degrading Sphingomonas sp. Strain ERG5, Isolated from a Groundwater Aquifer in Denmark.
    Nielsen TK, Kot W, Sørensen SR, Hansen LH.
    Genome Announc; 2015 Feb 12; 3(1):. PubMed ID: 25676756
    [Abstract] [Full Text] [Related]

  • 8. Using 2,6-dichlorobenzamide (BAM) degrading Aminobacter sp. MSH1 in flow through biofilters--initial adhesion and BAM degradation potentials.
    Albers CN, Jacobsen OS, Aamand J.
    Appl Microbiol Biotechnol; 2014 Jan 12; 98(2):957-67. PubMed ID: 23670436
    [Abstract] [Full Text] [Related]

  • 9. Groundwater contamination with 2,6-dichlorobenzamide (BAM) and perspectives for its microbial removal.
    Ellegaard-Jensen L, Horemans B, Raes B, Aamand J, Hansen LH.
    Appl Microbiol Biotechnol; 2017 Jul 12; 101(13):5235-5245. PubMed ID: 28616645
    [Abstract] [Full Text] [Related]

  • 10. Methanotrophic contribution to biodegradation of phenoxy acids in cultures enriched from a groundwater-fed rapid sand filter.
    Papadopoulou A, Hedegaard MJ, Dechesne A, Albrechtsen HJ, Musovic S, Smets BF.
    Appl Microbiol Biotechnol; 2019 Jan 12; 103(2):1007-1019. PubMed ID: 30474728
    [Abstract] [Full Text] [Related]

  • 11. The pesticide mineralization capacity in sand filter units of drinking water treatment plants (DWTP): Consistency in time and relationship with intake water and sand filter characteristics.
    Vandermaesen J, Horemans B, Degryse J, Boonen J, Walravens E, Springael D.
    Chemosphere; 2019 Aug 12; 228():427-436. PubMed ID: 31051344
    [Abstract] [Full Text] [Related]

  • 12. How bioaugmentation for pesticide removal influences the microbial community in biologically active sand filters.
    Pickering L, Castro-Gutierrez V, Holden B, Haley J, Jarvis P, Campo P, Hassard F.
    Chemosphere; 2024 Sep 12; 363():142956. PubMed ID: 39074664
    [Abstract] [Full Text] [Related]

  • 13. Combining reverse osmosis and microbial degradation for remediation of drinking water contaminated with recalcitrant pesticide residue.
    Schostag MD, Gobbi A, Fini MN, Ellegaard-Jensen L, Aamand J, Hansen LH, Muff J, Albers CN.
    Water Res; 2022 Jun 01; 216():118352. PubMed ID: 35358881
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Degradation and mineralisation of diuron by Sphingomonas sp. SRS2 and its potential for remediating at a realistic µg L(-1) diuron concentration.
    Sørensen SR, Juhler RK, Aamand J.
    Pest Manag Sci; 2013 Nov 01; 69(11):1239-44. PubMed ID: 23494959
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Transcription dynamics of the functional tfdA gene during MCPA herbicide degradation by Cupriavidus necator AEO106 (pRO101) in agricultural soil.
    Nicolaisen MH, Baelum J, Jacobsen CS, Sørensen J.
    Environ Microbiol; 2008 Mar 01; 10(3):571-9. PubMed ID: 18190516
    [Abstract] [Full Text] [Related]

  • 18. Reduced leaching of the herbicide MCPA after bioaugmentation with a formulated and stored Sphingobium sp.
    Önneby K, Håkansson S, Pizzul L, Stenström J.
    Biodegradation; 2014 Apr 01; 25(2):291-300. PubMed ID: 23982656
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.