These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
154 related items for PubMed ID: 27738351
1. Liquid Crystals as Stationary Phases in Chromatography. Grajek H, Witkiewicz Z, Purchała M, Drzewiński W. Chromatographia; 2016; 79(19):1217-1245. PubMed ID: 27738351 [Abstract] [Full Text] [Related]
2. Thermodynamics of solution in liquid crystalline poly(propyleneimine) dendrimers by inverse gas chromatography. Blokhina SV, Usol'tseva NV, Ol'khovich MV, Sharapova AV. J Chromatogr A; 2008 Dec 26; 1215(1-2):161-7. PubMed ID: 19026424 [Abstract] [Full Text] [Related]
3. Recent advances in gas chromatography for solid and liquid stationary phases containing metal ions. Rykowska I, Wasiak W. J Chromatogr A; 2009 Mar 06; 1216(10):1713-22. PubMed ID: 19091318 [Abstract] [Full Text] [Related]
4. Liquid-crystalline stationary phases for gas chromatography. Witkiewicz Z, Oszczudłowski J, Repelewicz M. J Chromatogr A; 2005 Jan 14; 1062(2):155-74. PubMed ID: 15679153 [Abstract] [Full Text] [Related]
5. Thermodynamics of sorption in the binary liquid crystalline system composed of the poly(propyleneimine) dendrimer and p-n-pentyloxy-p'-cyanobyphenyl by inverse gas chromatography. Blokhina SV, Ol'khovich MV, Sharapova AV, Borovkov NY. J Phys Chem B; 2010 Jun 17; 114(23):7703-9. PubMed ID: 20496896 [Abstract] [Full Text] [Related]
6. Chromatographic determination of the free energy of adsorption and absorption characteristic of 4-(trans-4'-n-alkylcyclohexyl) benzoates. Purchała M, Grajek H, Witkiewicz Z, Szala M, Kalus K. J Chromatogr A; 2020 Jul 05; 1622():461120. PubMed ID: 32345440 [Abstract] [Full Text] [Related]
7. Enantiorecognition ability of different chiral selectors for separation of liquid crystals in supercritical fluid chromatography; critical evaluation. Vaňkátová P, Folprechtová D, Kalíková K, Kubíčková A, Armstrong DW, Tesařová E. J Chromatogr A; 2020 Jul 05; 1622():461138. PubMed ID: 32376017 [Abstract] [Full Text] [Related]
8. Applications of inverse gas chromatography in the study of liquid crystalline stationary phases. Price GJ, Hickling SJ, Shillcock IM. J Chromatogr A; 2002 Sep 06; 969(1-2):193-205. PubMed ID: 12385391 [Abstract] [Full Text] [Related]
9. Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation. Gu ZY, Yang CX, Chang N, Yan XP. Acc Chem Res; 2012 May 15; 45(5):734-45. PubMed ID: 22404189 [Abstract] [Full Text] [Related]
10. Recent development trends for chiral stationary phases based on chitosan derivatives, cyclofructan derivatives and chiral porous materials in high performance liquid chromatography. Xie SM, Yuan LM. J Sep Sci; 2019 Jan 15; 42(1):6-20. PubMed ID: 30152091 [Abstract] [Full Text] [Related]
11. Crosslinked structurally-tuned polymeric ionic liquids as stationary phases for the analysis of hydrocarbons in kerosene and diesel fuels by comprehensive two-dimensional gas chromatography. Zhang C, Park RA, Anderson JL. J Chromatogr A; 2016 Apr 01; 1440():160-171. PubMed ID: 26916595 [Abstract] [Full Text] [Related]
12. Recent progress of chiral stationary phases for separation of enantiomers in gas chromatography. Xie SM, Yuan LM. J Sep Sci; 2017 Jan 01; 40(1):124-137. PubMed ID: 27570052 [Abstract] [Full Text] [Related]
13. High perfomance liquid chromatography in pharmaceutical analyses. Nikolin B, Imamović B, Medanhodzić-Vuk S, Sober M. Bosn J Basic Med Sci; 2004 May 01; 4(2):5-9. PubMed ID: 15629016 [Abstract] [Full Text] [Related]
14. Evaluation of gas chromatography for the separation of a broad range of isotopic compounds. Thakur N, Aslani S, Armstrong DW. Anal Chim Acta; 2021 Jun 22; 1165():338490. PubMed ID: 33975706 [Abstract] [Full Text] [Related]
15. Retention characteristics of organic compounds on molten salt and ionic liquid-based gas chromatography stationary phases. Yao C, Anderson JL. J Chromatogr A; 2009 Mar 06; 1216(10):1658-712. PubMed ID: 19131069 [Abstract] [Full Text] [Related]
16. Selectivity differences of coordination compound stationary phases for polyaromatic hydrocarbons and polar analytes in gas and liquid phases. Nolvachai Y, Kulsing C, Hawes CS, Batten SR, Turner DR, Marriott PJ. J Chromatogr A; 2017 Jun 02; 1500():167-171. PubMed ID: 28449874 [Abstract] [Full Text] [Related]
17. Evaluation of novel amylose and cellulose-based chiral stationary phases for the stereoisomer separation of flavanones by means of nano-liquid chromatography. Si-Ahmed K, Aturki Z, Chankvetadze B, Fanali S. Anal Chim Acta; 2012 Aug 13; 738():85-94. PubMed ID: 22790704 [Abstract] [Full Text] [Related]
18. [Stationary phases for hydrophilic interaction liquid chromatography and their applications in separation of traditional Chinese medicines]. Guo Z, Zhang X, Xu Q, Liang X. Se Pu; 2009 Sep 13; 27(5):675-81. PubMed ID: 20073204 [Abstract] [Full Text] [Related]
19. Retention mechanism for polycyclic aromatic hydrocarbons in reversed-phase liquid chromatography with monomeric stationary phases. Rafferty JL, Siepmann JI, Schure MR. J Chromatogr A; 2011 Dec 23; 1218(51):9183-93. PubMed ID: 22099228 [Abstract] [Full Text] [Related]
20. Laterally attached liquid-crystalline polymers as stationary phases in reversed-phase high-performance liquid chromatography. III. Effect of the local anisotropic order on the separation of polycyclic aromatic hydrocarbons. Gritti F, Félix G, Achard MF, Hardouin F. J Chromatogr A; 2001 Apr 13; 913(1-2):147-57. PubMed ID: 11355807 [Abstract] [Full Text] [Related] Page: [Next] [New Search]