These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


399 related items for PubMed ID: 27739374

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Superheating of ice crystals in antifreeze protein solutions.
    Celik Y, Graham LA, Mok YF, Bar M, Davies PL, Braslavsky I.
    Proc Natl Acad Sci U S A; 2010 Mar 23; 107(12):5423-8. PubMed ID: 20215465
    [Abstract] [Full Text] [Related]

  • 5. Antifreeze Proteins and Their Practical Utilization in Industry, Medicine, and Agriculture.
    Eskandari A, Leow TC, Rahman MBA, Oslan SN.
    Biomolecules; 2020 Dec 09; 10(12):. PubMed ID: 33317024
    [Abstract] [Full Text] [Related]

  • 6. Ice-Binding Proteins and Their Function.
    Bar Dolev M, Braslavsky I, Davies PL.
    Annu Rev Biochem; 2016 Jun 02; 85():515-42. PubMed ID: 27145844
    [Abstract] [Full Text] [Related]

  • 7. Carrot 'antifreeze' protein has an irregular ice-binding site that confers weak freezing point depression but strong inhibition of ice recrystallization.
    Wang Y, Graham LA, Han Z, Eves R, Gruneberg AK, Campbell RL, Zhang H, Davies PL.
    Biochem J; 2020 Jun 26; 477(12):2179-2192. PubMed ID: 32459306
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Perturbation of bacterial ice nucleation activity by a grass antifreeze protein.
    Tomalty HE, Walker VK.
    Biochem Biophys Res Commun; 2014 Sep 26; 452(3):636-41. PubMed ID: 25193694
    [Abstract] [Full Text] [Related]

  • 11. Ice-binding proteins from the fungus Antarctomyces psychrotrophicus possibly originate from two different bacteria through horizontal gene transfer.
    Arai T, Fukami D, Hoshino T, Kondo H, Tsuda S.
    FEBS J; 2019 Mar 26; 286(5):946-962. PubMed ID: 30548092
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. High water mobility on the ice-binding surface of a hyperactive antifreeze protein.
    Modig K, Qvist J, Marshall CB, Davies PL, Halle B.
    Phys Chem Chem Phys; 2010 Sep 21; 12(35):10189-97. PubMed ID: 20668761
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Applications of Antifreeze Proteins: Practical Use of the Quality Products from Japanese Fishes.
    Mahatabuddin S, Tsuda S.
    Adv Exp Med Biol; 2018 Sep 21; 1081():321-337. PubMed ID: 30288717
    [Abstract] [Full Text] [Related]

  • 18. Role of Polar and Nonpolar Groups in the Activity of Antifreeze Proteins: A Molecular Dynamics Simulation Study.
    Midya US, Bandyopadhyay S.
    J Phys Chem B; 2018 Oct 11; 122(40):9389-9398. PubMed ID: 30222341
    [Abstract] [Full Text] [Related]

  • 19. Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins.
    Olijve LL, Meister K, DeVries AL, Duman JG, Guo S, Bakker HJ, Voets IK.
    Proc Natl Acad Sci U S A; 2016 Apr 05; 113(14):3740-5. PubMed ID: 26936953
    [Abstract] [Full Text] [Related]

  • 20. Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their growth.
    Celik Y, Drori R, Pertaya-Braun N, Altan A, Barton T, Bar-Dolev M, Groisman A, Davies PL, Braslavsky I.
    Proc Natl Acad Sci U S A; 2013 Jan 22; 110(4):1309-14. PubMed ID: 23300286
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.