These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
232 related items for PubMed ID: 27744164
1. Biotransformation of volatile fatty acids to polyhydroxyalkanoates by employing mixed microbial consortia: The effect of pH and carbon source. Kourmentza C, Kornaros M. Bioresour Technol; 2016 Dec; 222():388-398. PubMed ID: 27744164 [Abstract] [Full Text] [Related]
2. Combined polyhydroxyalkanoates (PHA) and 1,3-propanediol production from crude glycerol: Selective conversion of volatile fatty acids into PHA by mixed microbial consortia. Burniol-Figols A, Varrone C, Le SB, Daugaard AE, Skiadas IV, Gavala HN. Water Res; 2018 Jun 01; 136():180-191. PubMed ID: 29505919 [Abstract] [Full Text] [Related]
3. Polyhydroxyalkanoates (PHA) production from fermented crude glycerol: Study on the conversion of 1,3-propanediol to PHA in mixed microbial consortia. Burniol-Figols A, Varrone C, Daugaard AE, Le SB, Skiadas IV, Gavala HN. Water Res; 2018 Jan 01; 128():255-266. PubMed ID: 29107910 [Abstract] [Full Text] [Related]
4. Dynamic synthesis of polyhydroxyalkanoates by bacterial consortium from simulated excess sludge fermentation liquid. Jia Q, Wang H, Wang X. Bioresour Technol; 2013 Jul 01; 140():328-36. PubMed ID: 23711941 [Abstract] [Full Text] [Related]
5. Strategies for efficiently selecting PHA producing mixed microbial cultures using complex feedstocks: Feast and famine regime and uncoupled carbon and nitrogen availabilities. Oliveira CS, Silva CE, Carvalho G, Reis MA. N Biotechnol; 2017 Jul 25; 37(Pt A):69-79. PubMed ID: 27793692 [Abstract] [Full Text] [Related]
6. Photosynthetic mixed culture polyhydroxyalkanoate (PHA) production from individual and mixed volatile fatty acids (VFAs): substrate preferences and co-substrate uptake. Fradinho JC, Oehmen A, Reis MA. J Biotechnol; 2014 Sep 20; 185():19-27. PubMed ID: 24915131 [Abstract] [Full Text] [Related]
7. Dynamic change of pH in acidogenic fermentation of cheese whey towards polyhydroxyalkanoates production: Impact on performance and microbial population. Gouveia AR, Freitas EB, Galinha CF, Carvalho G, Duque AF, Reis MA. N Biotechnol; 2017 Jul 25; 37(Pt A):108-116. PubMed ID: 27422276 [Abstract] [Full Text] [Related]
8. Efficient polyhydroxyalkanoate (PHA) accumulation by a new continuous feeding mode in three-stage mixed microbial culture (MMC) PHA production process. Chen Z, Huang L, Wen Q, Guo Z. J Biotechnol; 2015 Sep 10; 209():68-75. PubMed ID: 26073996 [Abstract] [Full Text] [Related]
9. Impact of nitrogen feeding regulation on polyhydroxyalkanoates production by mixed microbial cultures. Silva F, Campanari S, Matteo S, Valentino F, Majone M, Villano M. N Biotechnol; 2017 Jul 25; 37(Pt A):90-98. PubMed ID: 27457131 [Abstract] [Full Text] [Related]
10. Enrichment of a mixed microbial culture for polyhydroxyalkanoates production: Effect of pH and N and P concentrations. Montiel-Jarillo G, Carrera J, Suárez-Ojeda ME. Sci Total Environ; 2017 Apr 01; 583():300-307. PubMed ID: 28117150 [Abstract] [Full Text] [Related]
11. Polyhydroxyalkanoate synthesis by mixed microbial consortia cultured on fermented dairy manure: Effect of aeration on process rates/yields and the associated microbial ecology. Coats ER, Watson BS, Brinkman CK. Water Res; 2016 Dec 01; 106():26-40. PubMed ID: 27697682 [Abstract] [Full Text] [Related]
12. Polyhydroxyalkanoates (PHA) production in bacterial co-culture using glucose and volatile fatty acids as carbon source. Munir S, Jamil N. J Basic Microbiol; 2018 Mar 01; 58(3):247-254. PubMed ID: 29314110 [Abstract] [Full Text] [Related]
13. Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia. Reddy MV, Mohan SV. Bioresour Technol; 2012 Jan 01; 103(1):313-21. PubMed ID: 22055090 [Abstract] [Full Text] [Related]
14. Polyhydroxyalkanoate production from fermented volatile fatty acids: effect of pH and feeding regimes. Chen H, Meng H, Nie Z, Zhang M. Bioresour Technol; 2013 Jan 01; 128():533-8. PubMed ID: 23201909 [Abstract] [Full Text] [Related]
15. Flux balance analysis of mixed microbial cultures: application to the production of polyhydroxyalkanoates from complex mixtures of volatile fatty acids. Pardelha F, Albuquerque MG, Reis MA, Dias JM, Oliveira R. J Biotechnol; 2012 Dec 31; 162(2-3):336-45. PubMed ID: 23036926 [Abstract] [Full Text] [Related]
16. Production of polyhydroxyalkanoates from fermented sugar cane molasses by a mixed culture enriched in glycogen accumulating organisms. Bengtsson S, Pisco AR, Reis MA, Lemos PC. J Biotechnol; 2010 Feb 01; 145(3):253-63. PubMed ID: 19958801 [Abstract] [Full Text] [Related]
17. Thauera sp. Sel9, a new bacterial strain for polyhydroxyalkanoates production from volatile fatty acids. Andreolli M, Scerbacov V, Frison N, Zaccone C, Lampis S. N Biotechnol; 2022 Dec 25; 72():71-79. PubMed ID: 36191843 [Abstract] [Full Text] [Related]
18. Butyrate as preferred substrate for polyhydroxybutyrate production. Marang L, Jiang Y, van Loosdrecht MC, Kleerebezem R. Bioresour Technol; 2013 Aug 25; 142():232-9. PubMed ID: 23743427 [Abstract] [Full Text] [Related]
19. Bio-oil upgrading strategies to improve PHA production from selected aerobic mixed cultures. Moita Fidalgo R, Ortigueira J, Freches A, Pelica J, Gonçalves M, Mendes B, Lemos PC. N Biotechnol; 2014 Jun 25; 31(4):297-307. PubMed ID: 24189432 [Abstract] [Full Text] [Related]
20. Biosynthesis of polyhydroxyalkanoate by Gamma proteobacterium WD-3 from volatile fatty acids. Chen Z, Li Y, Wen Q, Zhang H. Chemosphere; 2011 Feb 25; 82(8):1209-13. PubMed ID: 21129764 [Abstract] [Full Text] [Related] Page: [Next] [New Search]