These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


314 related items for PubMed ID: 2774563

  • 1. Relationships between the NAD(P) redox state, fatty acid oxidation, and inner membrane permeability in rat liver mitochondria.
    Lê-Quôc D, Lê-Quôc K.
    Arch Biochem Biophys; 1989 Sep; 273(2):466-78. PubMed ID: 2774563
    [Abstract] [Full Text] [Related]

  • 2. Influence of the redox state of pyridine nucleotides on mitochondrial sulfhydryl groups and permeability transition.
    Bindoli A, Callegaro MT, Barzon E, Benetti M, Rigobello MP.
    Arch Biochem Biophys; 1997 Jun 01; 342(1):22-8. PubMed ID: 9185610
    [Abstract] [Full Text] [Related]

  • 3. Involvement of the ADP/ATP carrier in calcium-induced perturbations of the mitochondrial inner membrane permeability: importance of the orientation of the nucleotide binding site.
    Lê Quôc K, Lê Quôc D.
    Arch Biochem Biophys; 1988 Sep 01; 265(2):249-57. PubMed ID: 2844116
    [Abstract] [Full Text] [Related]

  • 4. Mangiferin, a natural occurring glucosyl xanthone, increases susceptibility of rat liver mitochondria to calcium-induced permeability transition.
    Andreu GL, Delgado R, Velho JA, Curti C, Vercesi AE.
    Arch Biochem Biophys; 2005 Jul 15; 439(2):184-93. PubMed ID: 15979560
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. The redox state of endogenous pyridine nucleotides can determine both the degree of mitochondrial oxidative stress and the solute selectivity of the permeability transition pore.
    Zago EB, Castilho RF, Vercesi AE.
    FEBS Lett; 2000 Jul 28; 478(1-2):29-33. PubMed ID: 10922464
    [Abstract] [Full Text] [Related]

  • 7. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides.
    Lehninger AL, Vercesi A, Bababunmi EA.
    Proc Natl Acad Sci U S A; 1978 Apr 28; 75(4):1690-4. PubMed ID: 25436
    [Abstract] [Full Text] [Related]

  • 8. Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites.
    Costantini P, Chernyak BV, Petronilli V, Bernardi P.
    J Biol Chem; 1996 Mar 22; 271(12):6746-51. PubMed ID: 8636095
    [Abstract] [Full Text] [Related]

  • 9. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities.
    Ronchi JA, Figueira TR, Ravagnani FG, Oliveira HC, Vercesi AE, Castilho RF.
    Free Radic Biol Med; 2013 Oct 22; 63():446-56. PubMed ID: 23747984
    [Abstract] [Full Text] [Related]

  • 10. The participation of NADP, the transmembrane potential and the energy-linked NAD(P) transhydrogenase in the process of Ca2+ efflux from rat liver mitochondria.
    Vercesi AE.
    Arch Biochem Biophys; 1987 Jan 22; 252(1):171-8. PubMed ID: 3813533
    [Abstract] [Full Text] [Related]

  • 11. Possible participation of membrane thiol groups on the mechanism of NAD(P)+-stimulated Ca2+ efflux from mitochondria.
    Vercesi AE.
    Biochem Biophys Res Commun; 1984 Feb 29; 119(1):305-10. PubMed ID: 6704122
    [Abstract] [Full Text] [Related]

  • 12. Inhibition of rat liver mitochondrial permeability transition by respiratory substrates.
    Rigobello MP, Turcato F, Bindoli A.
    Arch Biochem Biophys; 1995 May 10; 319(1):225-30. PubMed ID: 7771788
    [Abstract] [Full Text] [Related]

  • 13. The relationship between mitochondrial membrane permeability, membrane potential, and the retention of Ca2+ by mitochondria.
    Beatrice MC, Palmer JW, Pfeiffer DR.
    J Biol Chem; 1980 Sep 25; 255(18):8663-71. PubMed ID: 7410387
    [Abstract] [Full Text] [Related]

  • 14. Mitochondrial membrane protein thiol reactivity with N-ethylmaleimide or mersalyl is modified by Ca2+: correlation with mitochondrial permeability transition.
    Kowaltowski AJ, Vercesi AE, Castilho RF.
    Biochim Biophys Acta; 1997 Feb 15; 1318(3):395-402. PubMed ID: 9048976
    [Abstract] [Full Text] [Related]

  • 15. The mitochondrial permeability transition pore is modulated by oxidative agents through both pyridine nucleotides and glutathione at two separate sites.
    Chernyak BV, Bernardi P.
    Eur J Biochem; 1996 Jun 15; 238(3):623-30. PubMed ID: 8706660
    [Abstract] [Full Text] [Related]

  • 16. Stimulation of mitochondrial Ca2+ efflux by NADP+ with maintenance of respiratory control.
    Vercesi AE.
    An Acad Bras Cienc; 1985 Sep 15; 57(3):369-75. PubMed ID: 3832980
    [Abstract] [Full Text] [Related]

  • 17. Mitochondrial dysfunction induced by different organochalchogens is mediated by thiol oxidation and is not dependent of the classical mitochondrial permeability transition pore opening.
    Puntel RL, Roos DH, Folmer V, Nogueira CW, Galina A, Aschner M, Rocha JB.
    Toxicol Sci; 2010 Sep 15; 117(1):133-43. PubMed ID: 20573786
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Influence of metabolic inhibitors on mitochondrial permeability transition and glutathione status.
    Reed DJ, Savage MK.
    Biochim Biophys Acta; 1995 May 24; 1271(1):43-50. PubMed ID: 7599224
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.