These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


246 related items for PubMed ID: 27747891

  • 21. Volatile composition and sensory properties of Shiraz wines as affected by nitrogen supplementation and yeast species: rationalizing nitrogen modulation of wine aroma.
    Ugliano M, Travis B, Francis IL, Henschke PA.
    J Agric Food Chem; 2010 Dec 08; 58(23):12417-25. PubMed ID: 21067239
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Impact of fermentation rate changes on potential hydrogen sulfide concentrations in wine.
    Butzke CE, Park SK.
    J Microbiol Biotechnol; 2011 May 08; 21(5):519-24. PubMed ID: 21617350
    [Abstract] [Full Text] [Related]

  • 24. The nitrogen source impacts major volatile compounds released by Saccharomyces cerevisiae during alcoholic fermentation.
    Barbosa C, Mendes-Faia A, Mendes-Ferreira A.
    Int J Food Microbiol; 2012 Nov 15; 160(2):87-93. PubMed ID: 23177046
    [Abstract] [Full Text] [Related]

  • 25. Sulfate transport mutants affect hydrogen sulfide and sulfite production during alcoholic fermentation.
    Walker ME, Zhang J, Sumby KM, Lee A, Houlès A, Li S, Jiranek V.
    Yeast; 2021 Jun 15; 38(6):367-381. PubMed ID: 33560525
    [Abstract] [Full Text] [Related]

  • 26. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation.
    Medina K, Boido E, Dellacassa E, Carrau F.
    Int J Food Microbiol; 2012 Jul 02; 157(2):245-50. PubMed ID: 22687186
    [Abstract] [Full Text] [Related]

  • 27. Residue Distribution, Dissipation Behavior, and Removal of Four Fungicide Residues on Harvested Apple after Waxing Treatment.
    Jiang W, Chen X, Liu F, Pan C.
    J Agric Food Chem; 2019 Feb 27; 67(8):2307-2312. PubMed ID: 30735378
    [Abstract] [Full Text] [Related]

  • 28. The effect of pyrimethanil on the growth of wine yeasts.
    Cus F, Raspor P.
    Lett Appl Microbiol; 2008 Jul 27; 47(1):54-9. PubMed ID: 18544142
    [Abstract] [Full Text] [Related]

  • 29. Fate of patulin in the presence of the yeast Saccharomyces cerevisiae.
    Moss MO, Long MT.
    Food Addit Contam; 2002 Apr 27; 19(4):387-99. PubMed ID: 11962697
    [Abstract] [Full Text] [Related]

  • 30. Occurrence and impact of fungicides residues on fermentation during wine production- A review.
    Gava A, Emer CD, Ficagna E, Fernandes de Andrade S, Fuentefria AM.
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2021 Jun 27; 38(6):943-961. PubMed ID: 33784228
    [Abstract] [Full Text] [Related]

  • 31. Malolactic fermentation as a technique for the deacidification of hard apple cider.
    Reuss RM, Stratton JE, Smith DA, Read PE, Cuppett SL, Parkhurst AM.
    J Food Sci; 2010 Jun 27; 75(1):C74-8. PubMed ID: 20492153
    [Abstract] [Full Text] [Related]

  • 32. Impact of available nitrogen and sugar concentration in musts on alcoholic fermentation and subsequent wine spoilage by Brettanomyces bruxellensis.
    Childs BC, Bohlscheid JC, Edwards CG.
    Food Microbiol; 2015 Apr 27; 46():604-609. PubMed ID: 25475334
    [Abstract] [Full Text] [Related]

  • 33. Impact of initial lipid content and oxygen supply on alcoholic fermentation in champagne-like musts.
    Ochando T, Mouret JR, Humbert-Goffard A, Sablayrolles JM, Farines V.
    Food Res Int; 2017 Aug 27; 98():87-94. PubMed ID: 28610736
    [Abstract] [Full Text] [Related]

  • 34. Toxicity effects of fungicide residues on the wine-producing process.
    Calhelha RC, Andrade JV, Ferreira IC, Estevinho LM.
    Food Microbiol; 2006 Jun 27; 23(4):393-8. PubMed ID: 16943029
    [Abstract] [Full Text] [Related]

  • 35. Biocontrol activity of Starmerella bacillaris yeast against blue mold disease on apple fruit and its effect on cider fermentation.
    Nadai C, Fernandes Lemos WJ, Favaron F, Giacomini A, Corich V.
    PLoS One; 2018 Jun 27; 13(9):e0204350. PubMed ID: 30240411
    [Abstract] [Full Text] [Related]

  • 36. Effect of Saccharomyces cerevisiae and Schizosaccharomyces pombe strains on chemical composition and sensory quality of ciders made from Finnish apple cultivars.
    He W, Liu S, Heponiemi P, Heinonen M, Marsol-Vall A, Ma X, Yang B, Laaksonen O.
    Food Chem; 2021 May 30; 345():128833. PubMed ID: 33341559
    [Abstract] [Full Text] [Related]

  • 37. Dissipation kinetics of fluquinconazole and pyrimethanil residues in apples intended for baby food production.
    Szpyrka E, Walorczyk S.
    Food Chem; 2013 Dec 15; 141(4):3525-30. PubMed ID: 23993516
    [Abstract] [Full Text] [Related]

  • 38. Enhanced arginine biosynthesis and lower proteolytic profile as indicators of Saccharomyces cerevisiae stress in stationary phase during fermentation of high sugar grape must: A proteomic evidence.
    Noti O, Vaudano E, Giuffrida MG, Lamberti C, Cavallarin L, Garcia-Moruno E, Pessione E.
    Food Res Int; 2018 Mar 15; 105():1011-1018. PubMed ID: 29433191
    [Abstract] [Full Text] [Related]

  • 39. The Influence of Yeast Strain, β-Cyclodextrin, and Storage Time on Concentrations of Phytochemical Components, Sensory Attributes, and Antioxidative Activity of Novel Red Apple Ciders.
    Lachowicz S, Oszmiański J, Uździcka M, Chmielewska J.
    Molecules; 2019 Jul 05; 24(13):. PubMed ID: 31284529
    [Abstract] [Full Text] [Related]

  • 40. Control of blue mold (Penicillium expansum) by fludioxonil in apples (cv Empire) under controlled atmosphere and cold storage conditions.
    Errampalli D, Northover J, Skog L, Brubacher NR, Collucci CA.
    Pest Manag Sci; 2005 Jun 05; 61(6):591-6. PubMed ID: 15662721
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.