These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. QUANTUM INFORMATION. Coherent coupling of a single spin to microwave cavity photons. Viennot JJ, Dartiailh MC, Cottet A, Kontos T. Science; 2015 Jul 24; 349(6246):408-11. PubMed ID: 26206930 [Abstract] [Full Text] [Related]
9. Enhancing the dipolar coupling of a S-T0 qubit with a transverse sweet spot. Abadillo-Uriel JC, Eriksson MA, Coppersmith SN, Friesen M. Nat Commun; 2019 Dec 10; 10(1):5641. PubMed ID: 31822678 [Abstract] [Full Text] [Related]
10. Coherent microwave-photon-mediated coupling between a semiconductor and a superconducting qubit. Scarlino P, van Woerkom DJ, Mendes UC, Koski JV, Landig AJ, Andersen CK, Gasparinetti S, Reichl C, Wegscheider W, Ensslin K, Ihn T, Blais A, Wallraff A. Nat Commun; 2019 Jul 08; 10(1):3011. PubMed ID: 31285437 [Abstract] [Full Text] [Related]
11. Dipole coupling of a double quantum dot to a microwave resonator. Frey T, Leek PJ, Beck M, Blais A, Ihn T, Ensslin K, Wallraff A. Phys Rev Lett; 2012 Jan 27; 108(4):046807. PubMed ID: 22400878 [Abstract] [Full Text] [Related]
12. Decoupling a hole spin qubit from the nuclear spins. Prechtel JH, Kuhlmann AV, Houel J, Ludwig A, Valentin SR, Wieck AD, Warburton RJ. Nat Mater; 2016 Sep 27; 15(9):981-6. PubMed ID: 27454044 [Abstract] [Full Text] [Related]
13. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9. Yoneda J, Takeda K, Otsuka T, Nakajima T, Delbecq MR, Allison G, Honda T, Kodera T, Oda S, Hoshi Y, Usami N, Itoh KM, Tarucha S. Nat Nanotechnol; 2018 Feb 27; 13(2):102-106. PubMed ID: 29255292 [Abstract] [Full Text] [Related]
14. Coherent spin-photon coupling using a resonant exchange qubit. Landig AJ, Koski JV, Scarlino P, Mendes UC, Blais A, Reichl C, Wegscheider W, Wallraff A, Ensslin K, Ihn T. Nature; 2018 Aug 27; 560(7717):179-184. PubMed ID: 30046114 [Abstract] [Full Text] [Related]
15. Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED. Hua M, Tao MJ, Deng FG. Sci Rep; 2015 Mar 19; 5():9274. PubMed ID: 25787147 [Abstract] [Full Text] [Related]
16. Coupling a Germanium Hut Wire Hole Quantum Dot to a Superconducting Microwave Resonator. Li Y, Li SX, Gao F, Li HO, Xu G, Wang K, Liu D, Cao G, Xiao M, Wang T, Zhang JJ, Guo GC, Guo GP. Nano Lett; 2018 Mar 14; 18(3):2091-2097. PubMed ID: 29468882 [Abstract] [Full Text] [Related]
17. Superconducting Grid-Bus Surface Code Architecture for Hole-Spin Qubits. Nigg SE, Fuhrer A, Loss D. Phys Rev Lett; 2017 Apr 07; 118(14):147701. PubMed ID: 28430480 [Abstract] [Full Text] [Related]
18. Electric Dipole Coupling of a Bilayer Graphene Quantum Dot to a High-Impedance Microwave Resonator. Ruckriegel MJ, Gächter LM, Kealhofer D, Bahrami Panah M, Tong C, Adam C, Masseroni M, Duprez H, Garreis R, Watanabe K, Taniguchi T, Wallraff A, Ihn T, Ensslin K, Huang WW. Nano Lett; 2024 Jun 04; 24(24):7508-14. PubMed ID: 38833415 [Abstract] [Full Text] [Related]
20. Strong coupling of spin qubits to a transmission line resonator. Jin PQ, Marthaler M, Shnirman A, Schön G. Phys Rev Lett; 2012 May 11; 108(19):190506. PubMed ID: 23003017 [Abstract] [Full Text] [Related] Page: [Next] [New Search]