These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
508 related items for PubMed ID: 27756904
1. A novel gene cluster allows preferential utilization of fucosylated milk oligosaccharides in Bifidobacterium longum subsp. longum SC596. Garrido D, Ruiz-Moyano S, Kirmiz N, Davis JC, Totten SM, Lemay DG, Ugalde JA, German JB, Lebrilla CB, Mills DA. Sci Rep; 2016 Oct 19; 6():35045. PubMed ID: 27756904 [Abstract] [Full Text] [Related]
2. Fucosyllactose and L-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwanohense. Bunesova V, Lacroix C, Schwab C. BMC Microbiol; 2016 Oct 26; 16(1):248. PubMed ID: 27782805 [Abstract] [Full Text] [Related]
4. Broad conservation of milk utilization genes in Bifidobacterium longum subsp. infantis as revealed by comparative genomic hybridization. LoCascio RG, Desai P, Sela DA, Weimer B, Mills DA. Appl Environ Microbiol; 2010 Nov 26; 76(22):7373-81. PubMed ID: 20802066 [Abstract] [Full Text] [Related]
5. tuf Gene Sequence Variation in Bifidobacterium longum subsp. infantis Detected in the Fecal Microbiota of Chinese Infants. Lawley B, Centanni M, Watanabe J, Sims I, Carnachan S, Broadbent R, Lee PS, Wong KH, Tannock GW. Appl Environ Microbiol; 2018 Jul 01; 84(13):. PubMed ID: 29703739 [Abstract] [Full Text] [Related]
6. Comparative transcriptomics reveals key differences in the response to milk oligosaccharides of infant gut-associated bifidobacteria. Garrido D, Ruiz-Moyano S, Lemay DG, Sela DA, German JB, Mills DA. Sci Rep; 2015 Sep 04; 5():13517. PubMed ID: 26337101 [Abstract] [Full Text] [Related]
7. Bifidobacterium longum subsp. infantis ATCC 15697 α-fucosidases are active on fucosylated human milk oligosaccharides. Sela DA, Garrido D, Lerno L, Wu S, Tan K, Eom HJ, Joachimiak A, Lebrilla CB, Mills DA. Appl Environ Microbiol; 2012 Feb 04; 78(3):795-803. PubMed ID: 22138995 [Abstract] [Full Text] [Related]
8. Fucosylated Human Milk Oligosaccharide Foraging within the Species Bifidobacterium pseudocatenulatum Is Driven by Glycosyl Hydrolase Content and Specificity. Shani G, Hoeflinger JL, Heiss BE, Masarweh CF, Larke JA, Jensen NM, Wickramasinghe S, Davis JC, Goonatilleke E, El-Hawiet A, Nguyen L, Klassen JS, Slupsky CM, Lebrilla CB, Mills DA. Appl Environ Microbiol; 2022 Jan 25; 88(2):e0170721. PubMed ID: 34757822 [Abstract] [Full Text] [Related]
9. Human Milk Oligosaccharide Utilization in Intestinal Bifidobacteria Is Governed by Global Transcriptional Regulator NagR. Arzamasov AA, Nakajima A, Sakanaka M, Ojima MN, Katayama T, Rodionov DA, Osterman AL. mSystems; 2022 Oct 26; 7(5):e0034322. PubMed ID: 36094076 [Abstract] [Full Text] [Related]
10. Bifidobacterium longum subsp. infantis uses two different β-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides. Yoshida E, Sakurama H, Kiyohara M, Nakajima M, Kitaoka M, Ashida H, Hirose J, Katayama T, Yamamoto K, Kumagai H. Glycobiology; 2012 Mar 26; 22(3):361-8. PubMed ID: 21926104 [Abstract] [Full Text] [Related]
11. Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. Asakuma S, Hatakeyama E, Urashima T, Yoshida E, Katayama T, Yamamoto K, Kumagai H, Ashida H, Hirose J, Kitaoka M. J Biol Chem; 2011 Oct 07; 286(40):34583-92. PubMed ID: 21832085 [Abstract] [Full Text] [Related]
12. Galacto- and Fructo-oligosaccharides Utilized for Growth by Cocultures of Bifidobacterial Species Characteristic of the Infant Gut. Sims IM, Tannock GW. Appl Environ Microbiol; 2020 May 19; 86(11):. PubMed ID: 32220841 [Abstract] [Full Text] [Related]
13. Targeted High-Resolution Taxonomic Identification of Bifidobacterium longum subsp. infantis Using Human Milk Oligosaccharide Metabolizing Genes. Tso L, Bonham KS, Fishbein A, Rowland S, Klepac-Ceraj V. Nutrients; 2021 Aug 18; 13(8):. PubMed ID: 34444993 [Abstract] [Full Text] [Related]
14. An infant-associated bacterial commensal utilizes breast milk sialyloligosaccharides. Sela DA, Li Y, Lerno L, Wu S, Marcobal AM, German JB, Chen X, Lebrilla CB, Mills DA. J Biol Chem; 2011 Apr 08; 286(14):11909-18. PubMed ID: 21288901 [Abstract] [Full Text] [Related]
15. Genome-scale metabolic modeling of the human milk oligosaccharide utilization by Bifidobacterium longum subsp. infantis. Román L, Melis-Arcos F, Pröschle T, Saa PA, Garrido D. mSystems; 2024 Mar 19; 9(3):e0071523. PubMed ID: 38363147 [Abstract] [Full Text] [Related]
16. Comparative Genome Analysis of Bifidobacterium longum subsp. infantis Strains Reveals Variation in Human Milk Oligosaccharide Utilization Genes among Commercial Probiotics. Duar RM, Casaburi G, Mitchell RD, Scofield LNC, Ortega Ramirez CA, Barile D, Henrick BM, Frese SA. Nutrients; 2020 Oct 23; 12(11):. PubMed ID: 33114073 [Abstract] [Full Text] [Related]
17. In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria. Ward RE, Niñonuevo M, Mills DA, Lebrilla CB, German JB. Mol Nutr Food Res; 2007 Nov 23; 51(11):1398-405. PubMed ID: 17966141 [Abstract] [Full Text] [Related]
18. Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans. Garrido D, Kim JH, German JB, Raybould HE, Mills DA. PLoS One; 2011 Mar 15; 6(3):e17315. PubMed ID: 21423604 [Abstract] [Full Text] [Related]
19. Strain-specific strategies of 2'-fucosyllactose, 3-fucosyllactose, and difucosyllactose assimilation by Bifidobacterium longum subsp. infantis Bi-26 and ATCC 15697. Zabel BE, Gerdes S, Evans KC, Nedveck D, Singles SK, Volk B, Budinoff C. Sci Rep; 2020 Sep 28; 10(1):15919. PubMed ID: 32985563 [Abstract] [Full Text] [Related]
20. Bifidobacteria grown on human milk oligosaccharides downregulate the expression of inflammation-related genes in Caco-2 cells. Wickramasinghe S, Pacheco AR, Lemay DG, Mills DA. BMC Microbiol; 2015 Aug 25; 15():172. PubMed ID: 26303932 [Abstract] [Full Text] [Related] Page: [Next] [New Search]