These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


247 related items for PubMed ID: 27760818

  • 1. Descending propriospinal neurons mediate restoration of locomotor function following spinal cord injury.
    Benthall KN, Hough RA, McClellan AD.
    J Neurophysiol; 2017 Jan 01; 117(1):215-229. PubMed ID: 27760818
    [Abstract] [Full Text] [Related]

  • 2. Regulation of axonal regeneration following spinal cord injury in the lamprey.
    Benes JA, House KN, Burks FN, Conaway KP, Julien DP, Donley JP, Iyamu MA, McClellan AD.
    J Neurophysiol; 2017 Sep 01; 118(3):1439-1456. PubMed ID: 28469003
    [Abstract] [Full Text] [Related]

  • 3. Time course of locomotor recovery and functional regeneration in spinal cord-transected lamprey: in vitro preparations.
    McClellan AD.
    J Neurophysiol; 1994 Aug 01; 72(2):847-60. PubMed ID: 7983540
    [Abstract] [Full Text] [Related]

  • 4. Elimination of Left-Right Reciprocal Coupling in the Adult Lamprey Spinal Cord Abolishes the Generation of Locomotor Activity.
    Messina JA, St Paul A, Hargis S, Thompson WE, McClellan AD.
    Front Neural Circuits; 2017 Aug 01; 11():89. PubMed ID: 29225569
    [Abstract] [Full Text] [Related]

  • 5. Time course of functional changes in locomotor and sensory systems after spinal cord lesions in lamprey.
    Becker M, Parker D.
    J Neurophysiol; 2019 Jun 01; 121(6):2323-2335. PubMed ID: 31017839
    [Abstract] [Full Text] [Related]

  • 6. Locomotor recovery in spinal-transected lamprey: role of functional regeneration of descending axons from brainstem locomotor command neurons.
    McClellan AD.
    Neuroscience; 1990 Jun 01; 37(3):781-98. PubMed ID: 2247224
    [Abstract] [Full Text] [Related]

  • 7. Anatomical regeneration and behavioral recovery following crush injury of the trigeminal root in lamprey.
    Calton JL, Philbrick K, McClellan AD.
    J Comp Neurol; 1998 Jul 06; 396(3):322-37. PubMed ID: 9624587
    [Abstract] [Full Text] [Related]

  • 8. Descending propriospinal neurons in normal and spinal cord-transected lamprey.
    Rouse DT, McClellan AD.
    Exp Neurol; 1997 Jul 06; 146(1):113-24. PubMed ID: 9225744
    [Abstract] [Full Text] [Related]

  • 9. Increase in descending brain-spinal cord projections with age in larval lamprey: implications for spinal cord injury.
    Zhang L, Palmer R, McClellan AD.
    J Comp Neurol; 2002 May 27; 447(2):128-37. PubMed ID: 11977116
    [Abstract] [Full Text] [Related]

  • 10. Axonal regeneration of descending brain neurons in larval lamprey demonstrated by retrograde double labeling.
    Zhang L, McClellan AD.
    J Comp Neurol; 1999 Aug 09; 410(4):612-26. PubMed ID: 10398052
    [Abstract] [Full Text] [Related]

  • 11. Descending Dopaminergic Inputs to Reticulospinal Neurons Promote Locomotor Movements.
    Ryczko D, Grätsch S, Alpert MH, Cone JJ, Kasemir J, Ruthe A, Beauséjour PA, Auclair F, Roitman MF, Alford S, Dubuc R.
    J Neurosci; 2020 Oct 28; 40(44):8478-8490. PubMed ID: 32998974
    [Abstract] [Full Text] [Related]

  • 12. Conditioning lesions enhance axonal regeneration of descending brain neurons in spinal-cord-transected larval lamprey.
    Zhang L, Palmer R, McClellan AD.
    J Comp Neurol; 2004 Oct 25; 478(4):395-404. PubMed ID: 15384066
    [Abstract] [Full Text] [Related]

  • 13. Axonal regeneration of descending and ascending spinal projection neurons in spinal cord-transected larval lamprey.
    Armstrong J, Zhang L, McClellan AD.
    Exp Neurol; 2003 Apr 25; 180(2):156-66. PubMed ID: 12684029
    [Abstract] [Full Text] [Related]

  • 14. The Gigantocellular Reticular Nucleus Plays a Significant Role in Locomotor Recovery after Incomplete Spinal Cord Injury.
    Engmann AK, Bizzozzero F, Schneider MP, Pfyffer D, Imobersteg S, Schneider R, Hofer AS, Wieckhorst M, Schwab ME.
    J Neurosci; 2020 Oct 21; 40(43):8292-8305. PubMed ID: 32978289
    [Abstract] [Full Text] [Related]

  • 15. Modeling of lamprey reticulospinal neurons: multiple distinct parameter sets yield realistic simulations.
    Ruffolo JA, McClellan AD.
    J Neurophysiol; 2020 Sep 01; 124(3):895-913. PubMed ID: 32697608
    [Abstract] [Full Text] [Related]

  • 16. The Lesioned Spinal Cord Is a "New" Spinal Cord: Evidence from Functional Changes after Spinal Injury in Lamprey.
    Parker D.
    Front Neural Circuits; 2017 Sep 01; 11():84. PubMed ID: 29163065
    [Abstract] [Full Text] [Related]

  • 17. Spinal Cord Injury Significantly Alters the Properties of Reticulospinal Neurons: I. Biophysical Properties, Firing Patterns, Excitability, and Synaptic Inputs.
    Hough RA, Pale T, Benes JA, McClellan AD.
    Cells; 2021 Jul 29; 10(8):. PubMed ID: 34440690
    [Abstract] [Full Text] [Related]

  • 18. Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury.
    Bregman BS, Coumans JV, Dai HN, Kuhn PL, Lynskey J, McAtee M, Sandhu F.
    Prog Brain Res; 2002 Jul 29; 137():257-73. PubMed ID: 12440372
    [Abstract] [Full Text] [Related]

  • 19. Bridging the gap: a reticulo-propriospinal detour bypassing an incomplete spinal cord injury.
    Filli L, Engmann AK, Zörner B, Weinmann O, Moraitis T, Gullo M, Kasper H, Schneider R, Schwab ME.
    J Neurosci; 2014 Oct 01; 34(40):13399-410. PubMed ID: 25274818
    [Abstract] [Full Text] [Related]

  • 20. Functional regeneration and recovery of locomotor activity in spinally transected lamprey.
    McClellan AD.
    J Exp Zool; 1992 Mar 01; 261(3):274-87. PubMed ID: 1629660
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.