These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


188 related items for PubMed ID: 27770613

  • 1. Ornithine Decarboxylase Is Sufficient for Prostate Tumorigenesis via Androgen Receptor Signaling.
    Shukla-Dave A, Castillo-Martin M, Chen M, Lobo J, Gladoun N, Collazo-Lorduy A, Khan FM, Ponomarev V, Yi Z, Zhang W, Pandolfi PP, Hricak H, Cordon-Cardo C.
    Am J Pathol; 2016 Dec; 186(12):3131-3145. PubMed ID: 27770613
    [Abstract] [Full Text] [Related]

  • 2. Activation of polyamine catabolic enzymes involved in diverse responses against epibrassinolide-induced apoptosis in LNCaP and DU145 prostate cancer cell lines.
    Obakan P, Arisan ED, Calcabrini A, Agostinelli E, Bolkent S, Palavan-Unsal N.
    Amino Acids; 2014 Mar; 46(3):553-64. PubMed ID: 23963538
    [Abstract] [Full Text] [Related]

  • 3. Ornithine decarboxylase (ODC) expression pattern in human prostate tissues and ODC transgenic mice.
    Young L, Salomon R, Au W, Allan C, Russell P, Dong Q.
    J Histochem Cytochem; 2006 Feb; 54(2):223-9. PubMed ID: 16234506
    [Abstract] [Full Text] [Related]

  • 4. Role of ornithine decarboxylase in regulation of estrogen receptor alpha expression and growth in human breast cancer cells.
    Zhu Q, Jin L, Casero RA, Davidson NE, Huang Y.
    Breast Cancer Res Treat; 2012 Nov; 136(1):57-66. PubMed ID: 22976807
    [Abstract] [Full Text] [Related]

  • 5. Effects of antisense RNA targeting of ODC and AdoMetDC on the synthesis of polyamine synthesis and cell growth in prostate cancer cells using a prostatic androgen-dependent promoter in adenovirus.
    Li W, Liu X, Wang W, Sun H, Hu Y, Lei H, Liu G, Gao Y.
    Prostate; 2008 Sep 01; 68(12):1354-61. PubMed ID: 18548481
    [Abstract] [Full Text] [Related]

  • 6. Anti-tumor activity of antizyme which targets the ornithine decarboxylase (ODC) required for cell growth and transformation.
    Iwata S, Sato Y, Asada M, Takagi M, Tsujimoto A, Inaba T, Yamada T, Sakamoto S, Yata J, Shimogori T, Igarashi K, Mizutani S.
    Oncogene; 1999 Jan 07; 18(1):165-72. PubMed ID: 9926931
    [Abstract] [Full Text] [Related]

  • 7. Unforeseen Possibilities To Investigate the Regulation of Polyamine Metabolism Revealed by Novel C-Methylated Spermine Derivatives.
    Khomutov M, Hyvönen MT, Simonian A, Formanovsky AA, Mikhura IV, Chizhov AO, Kochetkov SN, Alhonen L, Vepsäläinen J, Keinänen TA, Khomutov AR.
    J Med Chem; 2019 Dec 26; 62(24):11335-11347. PubMed ID: 31765147
    [Abstract] [Full Text] [Related]

  • 8. Increased spermine oxidase expression in human prostate cancer and prostatic intraepithelial neoplasia tissues.
    Goodwin AC, Jadallah S, Toubaji A, Lecksell K, Hicks JL, Kowalski J, Bova GS, De Marzo AM, Netto GJ, Casero RA.
    Prostate; 2008 May 15; 68(7):766-72. PubMed ID: 18302221
    [Abstract] [Full Text] [Related]

  • 9. Androgen regulation of the human ornithine decarboxylase promoter in prostate cancer cells.
    Bai G, Kasper S, Matusik RJ, Rennie PS, Moshier JA, Krongrad A.
    J Androl; 1998 May 15; 19(2):127-35. PubMed ID: 9570735
    [Abstract] [Full Text] [Related]

  • 10. Expression and distribution of genes encoding for polyamine-metabolizing enzymes in the different zones of male and female mouse kidneys.
    Levillain O, Ramos-Molina B, Forcheron F, Peñafiel R.
    Amino Acids; 2012 Nov 15; 43(5):2153-63. PubMed ID: 22562773
    [Abstract] [Full Text] [Related]

  • 11. Polyamines are essential in embryo implantation: expression and function of polyamine-related genes in mouse uterus during peri-implantation period.
    Zhao YC, Chi YJ, Yu YS, Liu JL, Su RW, Ma XH, Shan CH, Yang ZM.
    Endocrinology; 2008 May 15; 149(5):2325-32. PubMed ID: 18202119
    [Abstract] [Full Text] [Related]

  • 12. Conditional expression of the androgen receptor induces oncogenic transformation of the mouse prostate.
    Zhu C, Luong R, Zhuo M, Johnson DT, McKenney JK, Cunha GR, Sun Z.
    J Biol Chem; 2011 Sep 23; 286(38):33478-88. PubMed ID: 21795710
    [Abstract] [Full Text] [Related]

  • 13. Biochemical evaluation of the anticancer potential of the polyamine-based nanocarrier Nano11047.
    Murray-Stewart T, Ferrari E, Xie Y, Yu F, Marton LJ, Oupicky D, Casero RA.
    PLoS One; 2017 Sep 23; 12(4):e0175917. PubMed ID: 28423064
    [Abstract] [Full Text] [Related]

  • 14. Tumor progression is accompanied by significant changes in the levels of expression of polyamine metabolism regulatory genes and clusterin (sulfated glycoprotein 2) in human prostate cancer specimens.
    Bettuzzi S, Davalli P, Astancolle S, Carani C, Madeo B, Tampieri A, Corti A.
    Cancer Res; 2000 Jan 01; 60(1):28-34. PubMed ID: 10646846
    [Abstract] [Full Text] [Related]

  • 15. MicroRNA alteration and putative target genes in high-grade prostatic intraepithelial neoplasia and prostate cancer: STAT3 and ZEB1 are upregulated during prostate carcinogenesis.
    Cha YJ, Lee JH, Han HH, Kim BG, Kang S, Choi YD, Cho NH.
    Prostate; 2016 Jul 01; 76(10):937-47. PubMed ID: 27017949
    [Abstract] [Full Text] [Related]

  • 16. Infiltrating macrophages promote prostate tumorigenesis via modulating androgen receptor-mediated CCL4-STAT3 signaling.
    Fang LY, Izumi K, Lai KP, Liang L, Li L, Miyamoto H, Lin WJ, Chang C.
    Cancer Res; 2013 Sep 15; 73(18):5633-46. PubMed ID: 23878190
    [Abstract] [Full Text] [Related]

  • 17. HER2 expression and gene amplification in pT2a Gleason score 6 prostate cancer incidentally detected in cystoprostatectomies: comparison with clinically detected androgen-dependent and androgen-independent cancer.
    Montironi R, Mazzucchelli R, Barbisan F, Stramazzotti D, Santinelli A, Scarpelli M, Lòpez Beltran A.
    Hum Pathol; 2006 Sep 15; 37(9):1137-44. PubMed ID: 16938518
    [Abstract] [Full Text] [Related]

  • 18. Polyamine synthesis from proline in the developing porcine placenta.
    Wu G, Bazer FW, Hu J, Johnson GA, Spencer TE.
    Biol Reprod; 2005 Apr 15; 72(4):842-50. PubMed ID: 15576824
    [Abstract] [Full Text] [Related]

  • 19. Association among an ornithine decarboxylase polymorphism, androgen receptor gene (CAG) repeat length and prostate cancer risk.
    Visvanathan K, Helzlsouer KJ, Boorman DW, Strickland PT, Hoffman SC, Comstock GW, O'Brien TG, Guo Y.
    J Urol; 2004 Feb 15; 171(2 Pt 1):652-5. PubMed ID: 14713779
    [Abstract] [Full Text] [Related]

  • 20. Peroxisome proliferator-activated receptor gamma and spermidine/spermine N1-acetyltransferase gene expressions are significantly correlated in human colorectal cancer.
    Linsalata M, Giannini R, Notarnicola M, Cavallini A.
    BMC Cancer; 2006 Jul 19; 6():191. PubMed ID: 16854216
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.