These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
743 related items for PubMed ID: 27770931
21. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering. Park SA, Lee SH, Kim WD. Bioprocess Biosyst Eng; 2011 May; 34(4):505-13. PubMed ID: 21170553 [Abstract] [Full Text] [Related]
22. Fabrication of Mechanically Reinforced Gelatin/Hydroxyapatite Bio-Composite Scaffolds by Core/Shell Nozzle Printing for Bone Tissue Engineering. Kim H, Hwangbo H, Koo Y, Kim G. Int J Mol Sci; 2020 May 11; 21(9):. PubMed ID: 32403422 [Abstract] [Full Text] [Related]
23. Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering. Ambre AH, Katti DR, Katti KS. J Biomed Mater Res A; 2015 Jun 11; 103(6):2077-101. PubMed ID: 25331212 [Abstract] [Full Text] [Related]
24. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR, Low S, Choon AT, Kumar AB, Ramakrishna S. Artif Organs; 2008 May 11; 32(5):388-97. PubMed ID: 18471168 [Abstract] [Full Text] [Related]
25. Clinoptilolite/PCL-PEG-PCL composite scaffolds for bone tissue engineering applications. Pazarçeviren E, Erdemli Ö, Keskin D, Tezcaner A. J Biomater Appl; 2017 Mar 11; 31(8):1148-1168. PubMed ID: 27881642 [Abstract] [Full Text] [Related]
26. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Shor L, Güçeri S, Wen X, Gandhi M, Sun W. Biomaterials; 2007 Dec 11; 28(35):5291-7. PubMed ID: 17884162 [Abstract] [Full Text] [Related]
27. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I. Liao HT, Lee MY, Tsai WW, Wang HC, Lu WC. J Tissue Eng Regen Med; 2016 Oct 11; 10(10):E337-E353. PubMed ID: 23955935 [Abstract] [Full Text] [Related]
28. Development of polycaprolactone porous scaffolds by combining solvent casting, particulate leaching, and polymer leaching techniques for bone tissue engineering. Thadavirul N, Pavasant P, Supaphol P. J Biomed Mater Res A; 2014 Oct 11; 102(10):3379-92. PubMed ID: 24132871 [Abstract] [Full Text] [Related]
29. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity. Milovac D, Gallego Ferrer G, Ivankovic M, Ivankovic H. Mater Sci Eng C Mater Biol Appl; 2014 Jan 01; 34():437-45. PubMed ID: 24268280 [Abstract] [Full Text] [Related]
30. Development of a new carbon nanotube-alginate-hydroxyapatite tricomponent composite scaffold for application in bone tissue engineering. Rajesh R, Ravichandran YD. Int J Nanomedicine; 2015 Jan 01; 10 Suppl 1(Suppl 1):7-15. PubMed ID: 26491303 [Abstract] [Full Text] [Related]
31. Bioactivity assessment of PLLA/PCL/HAP electrospun nanofibrous scaffolds for bone tissue engineering. Qi H, Ye Z, Ren H, Chen N, Zeng Q, Wu X, Lu T. Life Sci; 2016 Mar 01; 148():139-44. PubMed ID: 26874032 [Abstract] [Full Text] [Related]
32. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering. Wang J, Valmikinathan CM, Liu W, Laurencin CT, Yu X. J Biomed Mater Res A; 2010 May 01; 93(2):753-62. PubMed ID: 19642211 [Abstract] [Full Text] [Related]
33. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Jiang T, Abdel-Fattah WI, Laurencin CT. Biomaterials; 2006 Oct 01; 27(28):4894-903. PubMed ID: 16762408 [Abstract] [Full Text] [Related]
34. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering. Shor L, Güçeri S, Chang R, Gordon J, Kang Q, Hartsock L, An Y, Sun W. Biofabrication; 2009 Mar 01; 1(1):015003. PubMed ID: 20811098 [Abstract] [Full Text] [Related]
35. Preparation and characterization of (PCL-crosslinked-PEG)/hydroxyapatite as bone tissue engineering scaffolds. Koupaei N, Karkhaneh A, Daliri Joupari M. J Biomed Mater Res A; 2015 Dec 01; 103(12):3919-26. PubMed ID: 26015080 [Abstract] [Full Text] [Related]
36. Fabrication of chitosan-coated porous polycaprolactone/strontium-substituted bioactive glass nanocomposite scaffold for bone tissue engineering. Shaltooki M, Dini G, Mehdikhani M. Mater Sci Eng C Mater Biol Appl; 2019 Dec 01; 105():110138. PubMed ID: 31546409 [Abstract] [Full Text] [Related]
37. 3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering. Luo J, Zhang H, Zhu J, Cui X, Gao J, Wang X, Xiong J. Colloids Surf B Biointerfaces; 2018 Mar 01; 163():369-378. PubMed ID: 29335199 [Abstract] [Full Text] [Related]
38. Multi-functional P(3HB) microsphere/45S5 Bioglass-based composite scaffolds for bone tissue engineering. Francis L, Meng D, Knowles JC, Roy I, Boccaccini AR. Acta Biomater; 2010 Jul 01; 6(7):2773-86. PubMed ID: 20056174 [Abstract] [Full Text] [Related]
39. Mechanical, material, and biological study of a PCL/bioactive glass bone scaffold: Importance of viscoelasticity. Shahin-Shamsabadi A, Hashemi A, Tahriri M, Bastami F, Salehi M, Mashhadi Abbas F. Mater Sci Eng C Mater Biol Appl; 2018 Sep 01; 90():280-288. PubMed ID: 29853093 [Abstract] [Full Text] [Related]
40. Composite clinoptilolite/PCL-PEG-PCL scaffolds for bone regeneration: In vitro and in vivo evaluation. Pazarçeviren AE, Dikmen T, Altunbaş K, Yaprakçı V, Erdemli Ö, Keskin D, Tezcaner A. J Tissue Eng Regen Med; 2020 Jan 01; 14(1):3-15. PubMed ID: 31475790 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]