These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


130 related items for PubMed ID: 2777205

  • 1. Taurocholate transport by basolateral plasma membrane vesicles isolated from human liver.
    Novak DA, Ryckman FC, Suchy FJ.
    Hepatology; 1989 Oct; 10(4):447-53. PubMed ID: 2777205
    [Abstract] [Full Text] [Related]

  • 2. Direct determination of the driving forces for taurocholate uptake into rat liver plasma membrane vesicles.
    Duffy MC, Blitzer BL, Boyer JL.
    J Clin Invest; 1983 Oct; 72(4):1470-81. PubMed ID: 6630516
    [Abstract] [Full Text] [Related]

  • 3. Taurocholate transport by basolateral plasma membrane vesicles isolated from developing rat liver.
    Suchy FJ, Courchene SM, Blitzer BL.
    Am J Physiol; 1985 Jun; 248(6 Pt 1):G648-54. PubMed ID: 2408482
    [Abstract] [Full Text] [Related]

  • 4. Taurocholate transport and Na+-K+-ATPase activity in fetal and neonatal rat liver plasma membrane vesicles.
    Suchy FJ, Bucuvalas JC, Goodrich AL, Moyer MS, Blitzer BL.
    Am J Physiol; 1986 Nov; 251(5 Pt 1):G665-73. PubMed ID: 3022600
    [Abstract] [Full Text] [Related]

  • 5. Mechanisms of taurocholate transport in canalicular and basolateral rat liver plasma membrane vesicles. Evidence for an electrogenic canalicular organic anion carrier.
    Meier PJ, St Meier-Abt A, Barrett C, Boyer JL.
    J Biol Chem; 1984 Aug 25; 259(16):10614-22. PubMed ID: 6469975
    [Abstract] [Full Text] [Related]

  • 6. Amino acids are potent inhibitors of bile acid uptake by liver plasma membrane vesicles isolated from suckling rats.
    Bucuvalas JC, Goodrich AL, Blitzer BL, Suchy FJ.
    Pediatr Res; 1985 Dec 25; 19(12):1298-304. PubMed ID: 4080448
    [Abstract] [Full Text] [Related]

  • 7. Taurocholate transport by rat liver canalicular membrane vesicles. Evidence for the presence of an Na+-independent transport system.
    Inoue M, Kinne R, Tran T, Arias IM.
    J Clin Invest; 1984 Mar 25; 73(3):659-63. PubMed ID: 6707198
    [Abstract] [Full Text] [Related]

  • 8. Kinetic and energetic aspects of the inhibition of taurocholate uptake by Na+-dependent amino acids: studies in rat liver plasma membrane vesicles.
    Blitzer BL, Bueler RL.
    Am J Physiol; 1985 Jul 25; 249(1 Pt 1):G120-4. PubMed ID: 4014461
    [Abstract] [Full Text] [Related]

  • 9. A new method for the rapid isolation of basolateral plasma membrane vesicles from rat liver. Characterization, validation, and bile acid transport studies.
    Blitzer BL, Donovan CB.
    J Biol Chem; 1984 Jul 25; 259(14):9295-301. PubMed ID: 6746649
    [Abstract] [Full Text] [Related]

  • 10. Ontogeny of bile acid transport in brush border membrane vesicles from rat ileum.
    Moyer MS, Heubi JE, Goodrich AL, Balistreri WF, Suchy FJ.
    Gastroenterology; 1986 May 25; 90(5 Pt 1):1188-96. PubMed ID: 3956937
    [Abstract] [Full Text] [Related]

  • 11. Sodium ion-coupled uptake of taurocholate by rat-liver plasma membrane vesicles.
    Ruifrok PG, Meijer DK.
    Liver; 1982 Mar 25; 2(1):28-34. PubMed ID: 7176836
    [Abstract] [Full Text] [Related]

  • 12. Cholate uptake in basolateral rat liver plasma membrane vesicles and in liposomes.
    Caflisch C, Zimmerli B, Reichen J, Meier PJ.
    Biochim Biophys Acta; 1990 Jan 15; 1021(1):70-6. PubMed ID: 2294964
    [Abstract] [Full Text] [Related]

  • 13. Sodium gradient-dependent L-glutamate transport is localized to the canalicular domain of liver plasma membranes. Studies in rat liver sinusoidal and canalicular membrane vesicles.
    Ballatori N, Moseley RH, Boyer JL.
    J Biol Chem; 1986 May 15; 261(14):6216-21. PubMed ID: 2871024
    [Abstract] [Full Text] [Related]

  • 14. Hepatic taurine transport: a Na+-dependent carrier on the basolateral plasma membrane.
    Bucuvalas JC, Goodrich AL, Suchy FJ.
    Am J Physiol; 1987 Sep 15; 253(3 Pt 1):G351-8. PubMed ID: 3631271
    [Abstract] [Full Text] [Related]

  • 15. Multispecificity of Na+-dependent taurocholate uptake in basolateral (sinusoidal) rat liver plasma membrane vesicles.
    Zimmerli B, Valantinas J, Meier PJ.
    J Pharmacol Exp Ther; 1989 Jul 15; 250(1):301-8. PubMed ID: 2746502
    [Abstract] [Full Text] [Related]

  • 16. Enhancement of Na+-dependent bile acid uptake by albumin: direct demonstration in rat basolateral liver plasma membrane vesicles.
    Blitzer BL, Lyons L.
    Am J Physiol; 1985 Jul 15; 249(1 Pt 1):G34-8. PubMed ID: 3925791
    [Abstract] [Full Text] [Related]

  • 17. Taurocholate--sodium co-transport by brush-border membrane vesicles isolated from rat ileum.
    Lücke H, Stange G, Kinne R, Murer H.
    Biochem J; 1978 Sep 15; 174(3):951-8. PubMed ID: 581553
    [Abstract] [Full Text] [Related]

  • 18. Taurocholate transport by rat intestinal basolateral membrane vesicles. Evidence for the presence of an anion exchange transport system.
    Weinberg SL, Burckhardt G, Wilson FA.
    J Clin Invest; 1986 Jul 15; 78(1):44-50. PubMed ID: 3722383
    [Abstract] [Full Text] [Related]

  • 19. ATP-dependent transport of the linear renin-inhibiting peptide EMD 51921 by canalicular plasma membrane vesicles of rat liver: evidence of drug-stimulatable ATP-hydrolysis.
    Ziegler K, Kolac C, Ising W.
    Biochim Biophys Acta; 1994 Dec 30; 1196(2):209-17. PubMed ID: 7841185
    [Abstract] [Full Text] [Related]

  • 20. Properties of phallotoxin uptake by basolateral plasma membrane vesicles from rat liver: evidence for a carrier-mediated transport.
    Täfler M, Ziegler K, Frimmer M.
    Naunyn Schmiedebergs Arch Pharmacol; 1988 Feb 30; 337(2):231-7. PubMed ID: 3368021
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.