These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
116 related items for PubMed ID: 2777768
1. Isolation and characterization of Chinese hamster ovary cell mutants defective in amino acid transport System L. Collarini EJ, Campbell GS, Oxender DL. J Biol Chem; 1989 Sep 25; 264(27):15856-62. PubMed ID: 2777768 [Abstract] [Full Text] [Related]
2. Isolation of Chinese hamster ovary cell mutants defective in the regulation of leucine transport. Shotwell MA, Collarini EJ, Mansukhani A, Hampel AE, Oxender DL. J Biol Chem; 1983 Jul 10; 258(13):8183-7. PubMed ID: 6863284 [Abstract] [Full Text] [Related]
3. Regulation of amino acid transport system L in Chinese hamster ovary cells. Shotwell MA, Mattes PM, Jayme DW, Oxender DL. J Biol Chem; 1982 Mar 25; 257(6):2974-80. PubMed ID: 7061459 [Abstract] [Full Text] [Related]
4. Evidence for a regulatory element controlling amino acid transport system L in Chinese hamster ovary cells. Collarini EJ, Campbell GS, Oxender DL. J Cell Biochem; 1994 Dec 25; 56(4):544-9. PubMed ID: 7890812 [Abstract] [Full Text] [Related]
5. Characterization of a Chinese hamster-human hybrid cell line with increased system L amino acid transport activity. Lobaton CD, Moreno A, Oxender DL. Mol Cell Biol; 1984 Mar 25; 4(3):475-83. PubMed ID: 6717430 [Abstract] [Full Text] [Related]
6. Genetic studies of leucine transport in mammalian cells. Shotwell MA, Lobatón CD, Collarini EJ, Moreno A, Giles RE, Oxender DL. Fed Proc; 1984 May 15; 43(8):2269-72. PubMed ID: 6714434 [Abstract] [Full Text] [Related]
7. A role for aminoacyl-tRNA synthetases in the regulation of amino acid transport in mammalian cell lines. Moore PA, Jayme DW, Oxender DL. J Biol Chem; 1977 Nov 10; 252(21):7427-30. PubMed ID: 914817 [Abstract] [Full Text] [Related]
8. Characterization of cell lines showing growth control isolated from both the wild type and a leucyl-tRNA synthetase mutant of Chinese hamster ovary cells. Pollard JW, Stanners CP. J Cell Physiol; 1979 Mar 10; 98(3):571-85. PubMed ID: 438301 [Abstract] [Full Text] [Related]
9. Reformation of leucyl-tRNA synthetase complexes in revertants from CHO mutant tsH1. Klekamp M, Pahuski E, Hampel A. Somatic Cell Genet; 1981 Nov 10; 7(6):725-35. PubMed ID: 7323950 [Abstract] [Full Text] [Related]
10. Rapidly reversible enzyme inhibition in a temperature-sensitive mammalian cell mutant lacks thermotolerance. Vidair CA, Dewey WC. J Cell Physiol; 1989 Aug 10; 140(2):227-32. PubMed ID: 2745560 [Abstract] [Full Text] [Related]
16. The effect of amino acids on the temperature sensitive phenotype of the mammalian leucyl-tRNA synthetase mutant tsHl and its revertants. Molnar SJ, Rauth AM. J Cell Physiol; 1979 Feb 10; 98(2):315-26. PubMed ID: 422660 [Abstract] [Full Text] [Related]
19. Isolation and characterization of revertants of the mammalian temperature sensitive leucyl-tRNA synthetase mutant tsHl. Molnar SJ, Thompson LH, Lofgren DJ, Rauth AM. J Cell Physiol; 1979 Feb 10; 98(2):327-39. PubMed ID: 422661 [Abstract] [Full Text] [Related]
20. Efficient procedure for transferring specific human genes into Chinese hamster cell mutants: interspecific transfer of the human genes encoding leucyl- and asparaginyl-tRNA synthetases. Cirullo RE, Dana S, Wasmuth JJ. Mol Cell Biol; 1983 May 10; 3(5):892-902. PubMed ID: 6346061 [Abstract] [Full Text] [Related] Page: [Next] [New Search]