These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
163 related items for PubMed ID: 277922
1. Disulfide-linked high molecular weight protein associated with human cataract. Spector A, Roy D. Proc Natl Acad Sci U S A; 1978 Jul; 75(7):3244-8. PubMed ID: 277922 [Abstract] [Full Text] [Related]
2. Characterization of water-insoluble proteins in normal and cataractous human lens. Kamei A. Jpn J Ophthalmol; 1990 Jul; 34(2):216-24. PubMed ID: 2214364 [Abstract] [Full Text] [Related]
3. An extrinsic membrane polypeptide associated with high-molecular-weight protein aggregates in human cataract. Spector A, Garner MH, Garner WH, Roy D, Farnsworth P, Shyne S. Science; 1979 Jun 22; 204(4399):1323-6. PubMed ID: 377484 [Abstract] [Full Text] [Related]
4. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Harrington V, Srivastava OP, Kirk M. Mol Vis; 2007 Sep 14; 13():1680-94. PubMed ID: 17893670 [Abstract] [Full Text] [Related]
5. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses. Srivastava K, Chaves JM, Srivastava OP, Kirk M. Exp Eye Res; 2008 Oct 14; 87(4):356-66. PubMed ID: 18662688 [Abstract] [Full Text] [Related]
6. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses. Padayatti PS, Ng AS, Uchida K, Glomb MA, Nagaraj RH. Invest Ophthalmol Vis Sci; 2001 May 14; 42(6):1299-304. PubMed ID: 11328743 [Abstract] [Full Text] [Related]
8. Protein changes in the human lens during development of senile nuclear cataract. Kramps HA, Hoenders HJ, Wollensak J. Biochim Biophys Acta; 1976 May 20; 434(1):32-43. PubMed ID: 938670 [Abstract] [Full Text] [Related]
9. Characterization of disulfide-linked crystallins associated with human cataractous lens membranes. Kodama T, Takemoto L. Invest Ophthalmol Vis Sci; 1988 Jan 20; 29(1):145-9. PubMed ID: 3335427 [Abstract] [Full Text] [Related]
12. The state of sulphydryl groups in proteins isolated from normal and cataractous human lenses. Hum TP, Augusteyn RC. Curr Eye Res; 1987 Sep 20; 6(9):1091-101. PubMed ID: 3665565 [Abstract] [Full Text] [Related]
15. Existence of deamidated alphaB-crystallin fragments in normal and cataractous human lenses. Srivastava OP, Srivastava K. Mol Vis; 2003 Apr 16; 9():110-8. PubMed ID: 12707643 [Abstract] [Full Text] [Related]
16. Intermolecular disulfide bonding of lens membrane proteins during human cataractogenesis. Takemoto LJ, Hansen JS. Invest Ophthalmol Vis Sci; 1982 Mar 16; 22(3):336-42. PubMed ID: 7061206 [Abstract] [Full Text] [Related]
17. Immunochemical characterization of the major low molecular weight polypeptide (10K) from human cataractous lenses. Takemoto L, Straatsma B, Horwitz J. Exp Eye Res; 1989 Feb 16; 48(2):261-70. PubMed ID: 2466675 [Abstract] [Full Text] [Related]
18. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products. Saxena P, Saxena AK, Cui XL, Obrenovich M, Gudipaty K, Monnier VM. Invest Ophthalmol Vis Sci; 2000 May 16; 41(6):1473-81. PubMed ID: 10798665 [Abstract] [Full Text] [Related]
19. High molecular weight aggregates from human cataracts: characterization by Western blot analysis. Takemoto LJ, Hansen JS, Horwitz J. Biochem Biophys Res Commun; 1984 Aug 16; 122(3):1028-33. PubMed ID: 6477547 [Abstract] [Full Text] [Related]
20. Protein alterations in age-related cataract associated with a persistent hyaloid vascular system in senescence-accelerated mouse (SAM). Ashida Y, Takeda T, Hosokawa M. Exp Eye Res; 1994 Oct 16; 59(4):467-73. PubMed ID: 7859822 [Abstract] [Full Text] [Related] Page: [Next] [New Search]