These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


228 related items for PubMed ID: 27792201

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Designing cellulosic and nanocellulosic sensors for interface with a protease sequestrant wound-dressing prototype: Implications of material selection for dressing and protease sensor design.
    Fontenot KR, Edwards JV, Haldane D, Pircher N, Liebner F, Condon BD, Qureshi H, Yager D.
    J Biomater Appl; 2017 Nov; 32(5):622-637. PubMed ID: 29022841
    [Abstract] [Full Text] [Related]

  • 3. Peptide-Cellulose Conjugates on Cotton-Based Materials Have Protease Sensor/Sequestrant Activity.
    Edwards JV, Fontenot KR, Liebner F, Condon BD.
    Sensors (Basel); 2018 Jul 18; 18(7):. PubMed ID: 30021995
    [Abstract] [Full Text] [Related]

  • 4. Structure/Function Analysis of Cotton-Based Peptide-Cellulose Conjugates: Spatiotemporal/Kinetic Assessment of Protease Aerogels Compared to Nanocrystalline and Paper Cellulose.
    Edwards JV, Fontenot K, Liebner F, Pircher NDN, French AD, Condon BD.
    Int J Mol Sci; 2018 Mar 13; 19(3):. PubMed ID: 29534033
    [Abstract] [Full Text] [Related]

  • 5. Nanocellulose as a colorimetric biosensor for effective and facile detection of human neutrophil elastase.
    Ling Z, Xu F, Edwards JV, Prevost NT, Nam S, Condon BD, French AD.
    Carbohydr Polym; 2019 Jul 15; 216():360-368. PubMed ID: 31047078
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Aerogels from Cellulose Phosphates of Low Degree of Substitution: A TBAF·H2O/DMSO Based Approach.
    Schimper CB, Pachschwoell PS, Hettegger H, Neouze MA, Nedelec JM, Wendland M, Rosenau T, Liebner F.
    Molecules; 2020 Apr 07; 25(7):. PubMed ID: 32272769
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Comparative study of aerogels obtained from differently prepared nanocellulose fibers.
    Chen W, Li Q, Wang Y, Yi X, Zeng J, Yu H, Liu Y, Li J.
    ChemSusChem; 2014 Jan 07; 7(1):154-61. PubMed ID: 24420495
    [Abstract] [Full Text] [Related]

  • 11. Reinforcement of bacterial cellulose aerogels with biocompatible polymers.
    Pircher N, Veigel S, Aigner N, Nedelec JM, Rosenau T, Liebner F.
    Carbohydr Polym; 2014 Oct 13; 111(100):505-13. PubMed ID: 25037381
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Human neutrophil elastase and collagenase sequestration with phosphorylated cotton wound dressings.
    Edwards JV, Howley PS.
    J Biomed Mater Res A; 2007 Nov 13; 83(2):446-54. PubMed ID: 17477392
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Advances in regenerated cellulosic aerogel from waste cotton textile for emerging multidimensional applications.
    Huang Z, Zhang Y, Xing T, He A, Luo Y, Wang M, Qiao S, Tong A, Shi Z, Liao X, Pan H, Liang Z, Chen F, Xu W.
    Int J Biol Macromol; 2024 Jun 13; 270(Pt 2):132462. PubMed ID: 38772470
    [Abstract] [Full Text] [Related]

  • 20. A Study of the Physical and Mechanical Properties of Aerogels Obtained from Bacterial Cellulose.
    Revin VV, Pestov NA, Shchankin MV, Mishkin VP, Platonov VI, Uglanov DA.
    Biomacromolecules; 2019 Mar 11; 20(3):1401-1411. PubMed ID: 30768255
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.