These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
419 related items for PubMed ID: 27793507
1. Proliferating cell nuclear antigen prevents trinucleotide repeat expansions by promoting repeat deletion and hairpin removal. Beaver JM, Lai Y, Rolle SJ, Liu Y. DNA Repair (Amst); 2016 Dec; 48():17-29. PubMed ID: 27793507 [Abstract] [Full Text] [Related]
2. AP endonuclease 1 prevents trinucleotide repeat expansion via a novel mechanism during base excision repair. Beaver JM, Lai Y, Xu M, Casin AH, Laverde EE, Liu Y. Nucleic Acids Res; 2015 Jul 13; 43(12):5948-60. PubMed ID: 25990721 [Abstract] [Full Text] [Related]
3. Base excision repair of oxidative DNA damage coupled with removal of a CAG repeat hairpin attenuates trinucleotide repeat expansion. Xu M, Lai Y, Torner J, Zhang Y, Zhang Z, Liu Y. Nucleic Acids Res; 2014 Apr 13; 42(6):3675-91. PubMed ID: 24423876 [Abstract] [Full Text] [Related]
4. R-loops promote trinucleotide repeat deletion through DNA base excision repair enzymatic activities. Laverde EE, Lai Y, Leng F, Balakrishnan L, Freudenreich CH, Liu Y. J Biol Chem; 2020 Oct 02; 295(40):13902-13913. PubMed ID: 32763971 [Abstract] [Full Text] [Related]
5. Trinucleotide repeat deletion via a unique hairpin bypass by DNA polymerase β and alternate flap cleavage by flap endonuclease 1. Xu M, Gabison J, Liu Y. Nucleic Acids Res; 2013 Feb 01; 41(3):1684-97. PubMed ID: 23258707 [Abstract] [Full Text] [Related]
6. Stoichiometry of base excision repair proteins correlates with increased somatic CAG instability in striatum over cerebellum in Huntington's disease transgenic mice. Goula AV, Berquist BR, Wilson DM, Wheeler VC, Trottier Y, Merienne K. PLoS Genet; 2009 Dec 01; 5(12):e1000749. PubMed ID: 19997493 [Abstract] [Full Text] [Related]
7. The deoxyribose phosphate lyase of DNA polymerase β suppresses a processive DNA synthesis to prevent trinucleotide repeat instability. Lai Y, Weizmann Y, Liu Y. Nucleic Acids Res; 2018 Sep 28; 46(17):8940-8952. PubMed ID: 30085293 [Abstract] [Full Text] [Related]
8. Modulation of trinucleotide repeat instability by DNA polymerase β polymorphic variant R137Q. Ren Y, Lai Y, Laverde EE, Lei R, Rein HL, Liu Y. PLoS One; 2017 Sep 28; 12(5):e0177299. PubMed ID: 28475635 [Abstract] [Full Text] [Related]
9. The nucleotide sequence, DNA damage location, and protein stoichiometry influence the base excision repair outcome at CAG/CTG repeats. Goula AV, Pearson CE, Della Maria J, Trottier Y, Tomkinson AE, Wilson DM, Merienne K. Biochemistry; 2012 May 08; 51(18):3919-32. PubMed ID: 22497302 [Abstract] [Full Text] [Related]
10. Comparison of functional properties of mammalian DNA polymerase lambda and DNA polymerase beta in reactions of DNA synthesis related to DNA repair. Lebedeva NA, Rechkunova NI, Dezhurov SV, Khodyreva SN, Favre A, Blanco L, Lavrik OI. Biochim Biophys Acta; 2005 Aug 10; 1751(2):150-8. PubMed ID: 15979954 [Abstract] [Full Text] [Related]
11. DNA base excision repair: a mechanism of trinucleotide repeat expansion. Liu Y, Wilson SH. Trends Biochem Sci; 2012 Apr 10; 37(4):162-72. PubMed ID: 22285516 [Abstract] [Full Text] [Related]
12. Interactions among DNA ligase I, the flap endonuclease and proliferating cell nuclear antigen in the expansion and contraction of CAG repeat tracts in yeast. Refsland EW, Livingston DM. Genetics; 2005 Nov 10; 171(3):923-34. PubMed ID: 16079237 [Abstract] [Full Text] [Related]
13. A chemical and kinetic perspective on base excision repair of DNA. Schermerhorn KM, Delaney S. Acc Chem Res; 2014 Apr 15; 47(4):1238-46. PubMed ID: 24646203 [Abstract] [Full Text] [Related]
14. Instability of CTG repeats is governed by the position of a DNA base lesion through base excision repair. Lai Y, Xu M, Zhang Z, Liu Y. PLoS One; 2013 Apr 15; 8(2):e56960. PubMed ID: 23468897 [Abstract] [Full Text] [Related]
15. Coordination between polymerase beta and FEN1 can modulate CAG repeat expansion. Liu Y, Prasad R, Beard WA, Hou EW, Horton JK, McMurray CT, Wilson SH. J Biol Chem; 2009 Oct 09; 284(41):28352-28366. PubMed ID: 19674974 [Abstract] [Full Text] [Related]
16. Regulatory roles of p21 and apurinic/apyrimidinic endonuclease 1 in base excision repair. Tom S, Ranalli TA, Podust VN, Bambara RA. J Biol Chem; 2001 Dec 28; 276(52):48781-9. PubMed ID: 11641413 [Abstract] [Full Text] [Related]
17. Expansion of CAG triplet repeats by human DNA polymerases λ and β in vitro, is regulated by flap endonuclease 1 and DNA ligase 1. Crespan E, Hübscher U, Maga G. DNA Repair (Amst); 2015 May 28; 29():101-11. PubMed ID: 25687118 [Abstract] [Full Text] [Related]
18. Modulation of the Apurinic/Apyrimidinic Endonuclease Activity of Human APE1 and of Its Natural Polymorphic Variants by Base Excision Repair Proteins. Kladova OA, Alekseeva IV, Saparbaev M, Fedorova OS, Kuznetsov NA. Int J Mol Sci; 2020 Sep 28; 21(19):. PubMed ID: 32998246 [Abstract] [Full Text] [Related]
19. Incision-dependent and error-free repair of (CAG)(n)/(CTG)(n) hairpins in human cell extracts. Hou C, Chan NL, Gu L, Li GM. Nat Struct Mol Biol; 2009 Aug 28; 16(8):869-75. PubMed ID: 19597480 [Abstract] [Full Text] [Related]
20. An oxidized abasic lesion inhibits base excision repair leading to DNA strand breaks in a trinucleotide repeat tract. Beaver JM, Lai Y, Rolle SJ, Weng L, Greenberg MM, Liu Y. PLoS One; 2018 Aug 28; 13(2):e0192148. PubMed ID: 29389977 [Abstract] [Full Text] [Related] Page: [Next] [New Search]