These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A new metabolic route for the production of gamma-aminobutyric acid by Corynebacterium glutamicum from glucose. Jorge JM, Leggewie C, Wendisch VF. Amino Acids; 2016 Nov; 48(11):2519-2531. PubMed ID: 27289384 [Abstract] [Full Text] [Related]
3. Fermentative production of the diamine putrescine: system metabolic engineering of corynebacterium glutamicum. Nguyen AQ, Schneider J, Reddy GK, Wendisch VF. Metabolites; 2015 Apr 24; 5(2):211-31. PubMed ID: 25919117 [Abstract] [Full Text] [Related]
4. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid. Shin JH, Park SH, Oh YH, Choi JW, Lee MH, Cho JS, Jeong KJ, Joo JC, Yu J, Park SJ, Lee SY. Microb Cell Fact; 2016 Oct 07; 15(1):174. PubMed ID: 27717386 [Abstract] [Full Text] [Related]
5. Improved fermentative production of the compatible solute ectoine by Corynebacterium glutamicum from glucose and alternative carbon sources. Pérez-García F, Ziert C, Risse JM, Wendisch VF. J Biotechnol; 2017 Sep 20; 258():59-68. PubMed ID: 28478080 [Abstract] [Full Text] [Related]
6. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum by expressing glutamate decarboxylase active in expanded pH range. Choi JW, Yim SS, Lee SH, Kang TJ, Park SJ, Jeong KJ. Microb Cell Fact; 2015 Feb 15; 14():21. PubMed ID: 25886194 [Abstract] [Full Text] [Related]
7. Enhanced production of gamma-aminobutyrate (GABA) in recombinant Corynebacterium glutamicum strains from empty fruit bunch biosugar solution. Baritugo KA, Kim HT, David Y, Khang TU, Hyun SM, Kang KH, Yu JH, Choi JH, Song JJ, Joo JC, Park SJ. Microb Cell Fact; 2018 Aug 21; 17(1):129. PubMed ID: 30131070 [Abstract] [Full Text] [Related]
8. Elimination of polyamine N-acetylation and regulatory engineering improved putrescine production by Corynebacterium glutamicum. Nguyen AQ, Schneider J, Wendisch VF. J Biotechnol; 2015 May 10; 201():75-85. PubMed ID: 25449016 [Abstract] [Full Text] [Related]
9. Fermentative production of L-pipecolic acid from glucose and alternative carbon sources. Pérez-García F, Max Risse J, Friehs K, Wendisch VF. Biotechnol J; 2017 Jul 10; 12(7):. PubMed ID: 28169491 [Abstract] [Full Text] [Related]
10. Overexpression of ppc or deletion of mdh for improving production of γ-aminobutyric acid in recombinant Corynebacterium glutamicum. Shi F, Zhang M, Li Y. World J Microbiol Biotechnol; 2017 Jun 10; 33(6):122. PubMed ID: 28534111 [Abstract] [Full Text] [Related]
11. Microbial production of 4-amino-1-butanol, a four-carbon amino alcohol. Prabowo CPS, Shin JH, Cho JS, Chae TU, Lee SY. Biotechnol Bioeng; 2020 Sep 10; 117(9):2771-2780. PubMed ID: 32436991 [Abstract] [Full Text] [Related]
12. Metabolic engineering of Corynebacterium glutamicum S9114 to enhance the production of l-ornithine driven by glucose and xylose. Zhang B, Gao G, Chu XH, Ye BC. Bioresour Technol; 2019 Jul 10; 284():204-213. PubMed ID: 30939382 [Abstract] [Full Text] [Related]
13. Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Schneider J, Eberhardt D, Wendisch VF. Appl Microbiol Biotechnol; 2012 Jul 10; 95(1):169-78. PubMed ID: 22370950 [Abstract] [Full Text] [Related]
14. Deletion of odhA or pyc improves production of γ-aminobutyric acid and its precursor L-glutamate in recombinant Corynebacterium glutamicum. Wang N, Ni Y, Shi F. Biotechnol Lett; 2015 Jul 10; 37(7):1473-81. PubMed ID: 25801673 [Abstract] [Full Text] [Related]
15. Chromosomal editing of Corynebacterium glutamicum ATCC 13032 to produce gamma-aminobutyric acid. Yao C, Shi F, Wang X. Biotechnol Appl Biochem; 2023 Feb 10; 70(1):7-21. PubMed ID: 35106837 [Abstract] [Full Text] [Related]
16. A new metabolic route for the fermentative production of 5-aminovalerate from glucose and alternative carbon sources. Jorge JMP, Pérez-García F, Wendisch VF. Bioresour Technol; 2017 Dec 10; 245(Pt B):1701-1709. PubMed ID: 28522202 [Abstract] [Full Text] [Related]
17. Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane. Buschke N, Becker J, Schäfer R, Kiefer P, Biedendieck R, Wittmann C. Biotechnol J; 2013 May 10; 8(5):557-70. PubMed ID: 23447448 [Abstract] [Full Text] [Related]
18. Modular pathway engineering of Corynebacterium glutamicum for production of the glutamate-derived compounds ornithine, proline, putrescine, citrulline, and arginine. Jensen JV, Eberhardt D, Wendisch VF. J Biotechnol; 2015 Nov 20; 214():85-94. PubMed ID: 26393954 [Abstract] [Full Text] [Related]
19. Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate. Rohles CM, Gießelmann G, Kohlstedt M, Wittmann C, Becker J. Microb Cell Fact; 2016 Sep 13; 15(1):154. PubMed ID: 27618862 [Abstract] [Full Text] [Related]
20. Enhancement of γ-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis. Shi F, Jiang J, Li Y, Li Y, Xie Y. J Ind Microbiol Biotechnol; 2013 Nov 13; 40(11):1285-96. PubMed ID: 23928903 [Abstract] [Full Text] [Related] Page: [Next] [New Search]