These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


683 related items for PubMed ID: 27818307

  • 21. Hemocompatibility research on the micro-structure surface of a bionic heart valve.
    Ye X, Wang Z, Zhang X, Zhou M, Cai L.
    Biomed Mater Eng; 2014; 24(6):2361-9. PubMed ID: 25226936
    [Abstract] [Full Text] [Related]

  • 22. The ability of surface characteristics of materials to trigger leukocyte tissue factor expression.
    Fischer M, Sperling C, Tengvall P, Werner C.
    Biomaterials; 2010 Mar; 31(9):2498-507. PubMed ID: 20035991
    [Abstract] [Full Text] [Related]

  • 23. Blood-compatibility of polyurethane/liquid crystal composite membranes.
    Zhou C, Yi Z.
    Biomaterials; 1999 Nov; 20(22):2093-9. PubMed ID: 10555076
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Hemocompatibility study of a bacterial cellulose/polyvinyl alcohol nanocomposite.
    Leitão AF, Gupta S, Silva JP, Reviakine I, Gama M.
    Colloids Surf B Biointerfaces; 2013 Nov 01; 111():493-502. PubMed ID: 23880088
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes.
    Gorbet MB, Sefton MV.
    Biomaterials; 2004 Nov 01; 25(26):5681-703. PubMed ID: 15147815
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Lysine-PEG-modified polyurethane as a fibrinolytic surface: Effect of PEG chain length on protein interactions, platelet interactions and clot lysis.
    Li D, Chen H, Glenn McClung W, Brash JL.
    Acta Biomater; 2009 Jul 01; 5(6):1864-71. PubMed ID: 19342321
    [Abstract] [Full Text] [Related]

  • 36. Evaluation of the hemocompatibility of RADA 16-I peptide.
    Taghavi L, Aramvash A, Seyedkarimi MS, Malek Sabet N.
    J Biomater Appl; 2018 Mar 01; 32(8):1024-1031. PubMed ID: 29249197
    [Abstract] [Full Text] [Related]

  • 37. Surface fluorination of polylactide as a path to improve platelet associated hemocompatibility.
    Khalifehzadeh R, Ciridon W, Ratner BD.
    Acta Biomater; 2018 Sep 15; 78():23-35. PubMed ID: 30036719
    [Abstract] [Full Text] [Related]

  • 38. Blood compatibility evaluation of poly(D,L-lactide-co-beta-malic acid) modified with the GRGDS sequence.
    Liu Y, Wang W, Wang J, Wang Y, Yuan Z, Tang S, Liu M, Tang H.
    Colloids Surf B Biointerfaces; 2010 Jan 01; 75(1):370-6. PubMed ID: 19811897
    [Abstract] [Full Text] [Related]

  • 39. Enhanced Hemocompatibility of a Direct Chemical Vapor Deposition-Derived Graphene Film.
    Meng X, Cheng Y, Wang P, Chen K, Chen Z, Liu X, Fu X, Wang K, Liu K, Liu Z, Duan X.
    ACS Appl Mater Interfaces; 2021 Feb 03; 13(4):4835-4843. PubMed ID: 33474941
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 35.