These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
146 related items for PubMed ID: 27823565
1. An Improved Comparative Docking Approach for Developing Specific Glycogen Phosphorylase Inhibitors Using Pentacyclic Triterpenes. Konkimalla VB. Curr Top Med Chem; 2017; 17(14):1640-1645. PubMed ID: 27823565 [Abstract] [Full Text] [Related]
2. New pentacyclic triterpenes from Gypsophila oldhamiana and their biological evaluation as glycogen phosphorylase inhibitors. Luo JG, Liu J, Kong LY. Chem Biodivers; 2008 May; 5(5):751-7. PubMed ID: 18493961 [Abstract] [Full Text] [Related]
3. Synthesis and biological evaluation of ambradiolic acid as an inhibitor of glycogen phosphorylase. Liu J, Zhang H, Zhu P, Wu X, Yao H, Ye W, Jiang J, Xu J. Fitoterapia; 2015 Jan; 100():50-5. PubMed ID: 25447165 [Abstract] [Full Text] [Related]
4. Synthesis of 3-deoxypentacyclic triterpene derivatives as inhibitors of glycogen phosphorylase. Zhang P, Hao J, Liu J, Lu Q, Sheng H, Zhang L, Sun H. J Nat Prod; 2009 Aug; 72(8):1414-8. PubMed ID: 19642687 [Abstract] [Full Text] [Related]
5. Sourcing the affinity of flavonoids for the glycogen phosphorylase inhibitor site via crystallography, kinetics and QM/MM-PBSA binding studies: comparison of chrysin and flavopiridol. Tsitsanou KE, Hayes JM, Keramioti M, Mamais M, Oikonomakos NG, Kato A, Leonidas DD, Zographos SE. Food Chem Toxicol; 2013 Nov; 61():14-27. PubMed ID: 23279842 [Abstract] [Full Text] [Related]
6. Synthesis, screening and docking of small heterocycles as glycogen phosphorylase inhibitors. Schweiker SS, Loughlin WA, Lohning AS, Petersson MJ, Jenkins ID. Eur J Med Chem; 2014 Sep 12; 84():584-94. PubMed ID: 25062009 [Abstract] [Full Text] [Related]
7. Identification of pentacyclic triterpenes derivatives as potent inhibitors against glycogen phosphorylase based on 3D-QSAR studies. Liang Z, Zhang L, Li L, Liu J, Li H, Zhang L, Chen L, Cheng K, Zheng M, Wen X, Zhang P, Hao J, Gong Y, Zhang X, Zhu X, Chen J, Liu H, Jiang H, Luo C, Sun H. Eur J Med Chem; 2011 Jun 12; 46(6):2011-21. PubMed ID: 21439694 [Abstract] [Full Text] [Related]
8. Pentacyclic triterpenes. Part 1: the first examples of naturally occurring pentacyclic triterpenes as a new class of inhibitors of glycogen phosphorylases. Wen X, Sun H, Liu J, Wu G, Zhang L, Wu X, Ni P. Bioorg Med Chem Lett; 2005 Nov 15; 15(22):4944-8. PubMed ID: 16169219 [Abstract] [Full Text] [Related]
9. Phytogenic Polyphenols as Glycogen Phosphorylase Inhibitors: The Potential of Triterpenes and Flavonoids for Glycaemic Control in Type 2 Diabetes. Leonidas DD, Hayes JM, Kato A, Skamnaki VT, Chatzileontiadou DS, Kantsadi AL, Kyriakis E, Chetter BA, Stravodimos GA. Curr Med Chem; 2017 Nov 15; 24(4):384-403. PubMed ID: 27855623 [Abstract] [Full Text] [Related]
10. Modeling aided design of potent glycogen phosphorylase inhibitors. Deng Q, Lu Z, Bohn J, Ellsworth KP, Myers RW, Geissler WM, Harris G, Willoughby CA, Chapman K, McKeever B, Mosley R. J Mol Graph Model; 2005 Apr 15; 23(5):457-64. PubMed ID: 15781188 [Abstract] [Full Text] [Related]
11. Pentacyclic triterpenoids from spikes of Prunella vulgaris L. inhibit glycogen phosphorylase and improve insulin sensitivity in 3T3-L1 adipocytes. Yu Q, Qi J, Wang L, Liu SJ, Yu BY. Phytother Res; 2015 Jan 15; 29(1):73-9. PubMed ID: 25278372 [Abstract] [Full Text] [Related]
12. Pentacyclic triterpenes. Part 3: Synthesis and biological evaluation of oleanolic acid derivatives as novel inhibitors of glycogen phosphorylase. Chen J, Liu J, Zhang L, Wu G, Hua W, Wu X, Sun H. Bioorg Med Chem Lett; 2006 Jun 01; 16(11):2915-9. PubMed ID: 16546381 [Abstract] [Full Text] [Related]
13. Docking-based comparative intermolecular contacts analysis as new 3-D QSAR concept for validating docking studies and in silico screening: NMT and GP inhibitors as case studies. Taha MO, Habash M, Al-Hadidi Z, Al-Bakri A, Younis K, Sisan S. J Chem Inf Model; 2011 Mar 28; 51(3):647-69. PubMed ID: 21370899 [Abstract] [Full Text] [Related]
14. Discovery and evaluation of novel benzazepinone derivatives as glycogen phosphorylase inhibitors with potent activity. Wang Y, Yan Z, Guo Y, Zhang L. Future Med Chem; 2021 May 28; 13(10):897-909. PubMed ID: 33906369 [Abstract] [Full Text] [Related]
15. A multidisciplinary study of 3-(β-d-glucopyranosyl)-5-substituted-1,2,4-triazole derivatives as glycogen phosphorylase inhibitors: Computation, synthesis, crystallography and kinetics reveal new potent inhibitors. Kun S, Begum J, Kyriakis E, Stamati ECV, Barkas TA, Szennyes E, Bokor É, Szabó KE, Stravodimos GA, Sipos Á, Docsa T, Gergely P, Moffatt C, Patraskaki MS, Kokolaki MC, Gkerdi A, Skamnaki VT, Leonidas DD, Somsák L, Hayes JM. Eur J Med Chem; 2018 Mar 10; 147():266-278. PubMed ID: 29453094 [Abstract] [Full Text] [Related]
16. Discovering benzamide derivatives as glycogen phosphorylase inhibitors and their binding site at the enzyme. Chen L, Li H, Liu J, Zhang L, Liu H, Jiang H. Bioorg Med Chem; 2007 Nov 01; 15(21):6763-74. PubMed ID: 17719791 [Abstract] [Full Text] [Related]
17. The experimental type 2 diabetes therapy glycogen phosphorylase inhibition can impair aerobic muscle function during prolonged contraction. Baker DJ, Greenhaff PL, MacInnes A, Timmons JA. Diabetes; 2006 Jun 01; 55(6):1855-61. PubMed ID: 16731853 [Abstract] [Full Text] [Related]
18. Pentacyclic triterpenes. Part 5: synthesis and SAR study of corosolic acid derivatives as inhibitors of glycogen phosphorylases. Wen X, Xia J, Cheng K, Zhang L, Zhang P, Liu J, Zhang L, Ni P, Sun H. Bioorg Med Chem Lett; 2007 Nov 01; 17(21):5777-82. PubMed ID: 17869102 [Abstract] [Full Text] [Related]
19. Synthesis and biological evaluation of novel pentacyclic triterpene derivatives as potential PPARγ agonists. Zhang L, Dong J, Liu J, Zhang L, Kong L, Yao H, Sun H. Med Chem; 2013 Feb 01; 9(1):118-25. PubMed ID: 22779802 [Abstract] [Full Text] [Related]
20. Crystallographic and computational studies on 4-phenyl-N-(beta-D-glucopyranosyl)-1H-1,2,3-triazole-1-acetamide, an inhibitor of glycogen phosphorylase: comparison with alpha-D-glucose, N-acetyl-beta-D-glucopyranosylamine and N-benzoyl-N'-beta-D-glucopyranosyl urea binding. Alexacou KM, Hayes JM, Tiraidis C, Zographos SE, Leonidas DD, Chrysina ED, Archontis G, Oikonomakos NG, Paul JV, Varghese B, Loganathan D. Proteins; 2008 May 15; 71(3):1307-23. PubMed ID: 18041758 [Abstract] [Full Text] [Related] Page: [Next] [New Search]