These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
210 related items for PubMed ID: 2782422
1. Electrolyte, urea, and water transport in a two-nephron central core model of the renal medulla. Stephenson JL, Zhang Y, Tewarson R. Am J Physiol; 1989 Sep; 257(3 Pt 2):F399-413. PubMed ID: 2782422 [Abstract] [Full Text] [Related]
2. Cycles and separations in a model of the renal medulla. Thomas SR. Am J Physiol; 1998 Nov; 275(5):F671-90. PubMed ID: 9815126 [Abstract] [Full Text] [Related]
3. Electrolyte transport in a central core model of the renal medulla. Stephenson JL, Zhang Y, Eftekhari A, Tewarson R. Am J Physiol; 1987 Nov; 253(5 Pt 2):F982-97. PubMed ID: 3688243 [Abstract] [Full Text] [Related]
4. Urea transport in isolated thick ascending limbs and collecting ducts from rats. Knepper MA. Am J Physiol; 1983 Nov; 245(5 Pt 1):F634-9. PubMed ID: 6638183 [Abstract] [Full Text] [Related]
5. "Avian-type" renal medullary tubule organization causes immaturity of urine-concentrating ability in neonates. Liu W, Morimoto T, Kondo Y, Iinuma K, Uchida S, Imai M. Kidney Int; 2001 Aug; 60(2):680-93. PubMed ID: 11473651 [Abstract] [Full Text] [Related]
6. Alternative channels for urea in the inner medulla of the rat kidney. Nawata CM, Dantzler WH, Pannabecker TL. Am J Physiol Renal Physiol; 2015 Dec 01; 309(11):F916-24. PubMed ID: 26423860 [Abstract] [Full Text] [Related]
7. Urea handling by the renal countercurrent system: insights from computer simulation. Stewart J. Pflugers Arch; 1975 Apr 29; 356(2):133-51. PubMed ID: 1171437 [Abstract] [Full Text] [Related]
8. Maximum urine concentrating capability in a mathematical model of the inner medulla of the rat kidney. Marcano M, Layton AT, Layton HE. Bull Math Biol; 2010 Feb 29; 72(2):314-39. PubMed ID: 19915926 [Abstract] [Full Text] [Related]
9. A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results. Layton AT. Am J Physiol Renal Physiol; 2011 Feb 29; 300(2):F356-71. PubMed ID: 21068086 [Abstract] [Full Text] [Related]
10. Countercurrent multiplication may not explain the axial osmolality gradient in the outer medulla of the rat kidney. Layton AT, Layton HE. Am J Physiol Renal Physiol; 2011 Nov 29; 301(5):F1047-56. PubMed ID: 21753076 [Abstract] [Full Text] [Related]
11. Role of inner medullary collecting duct NaCl transport in urinary concentration. Chandhoke PS, Saidel GM, Knepper MA. Am J Physiol; 1985 Nov 29; 249(5 Pt 2):F688-97. PubMed ID: 4061655 [Abstract] [Full Text] [Related]
12. Sodium chloride, urea, and water transport in the thin ascending limb of Henle. Generation of osmotic gradients by passive diffusion of solutes. Imai M, Kokko JP. J Clin Invest; 1974 Feb 29; 53(2):393-402. PubMed ID: 11344552 [Abstract] [Full Text] [Related]
13. Two modes for concentrating urine in rat inner medulla. Layton AT, Pannabecker TL, Dantzler WH, Layton HE. Am J Physiol Renal Physiol; 2004 Oct 29; 287(4):F816-39. PubMed ID: 15213067 [Abstract] [Full Text] [Related]