These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Plasmon- and Waveguide-Coupled Fluorescence at the Ultraviolet Region. Badugu R, Lakowicz JR. J Phys Chem C Nanomater Interfaces; 2023 Jun 29; 127(25):12084-12095. PubMed ID: 38274198 [Abstract] [Full Text] [Related]
5. Massive Enhancement of Optical Transmission across a Thin Metal Film via Wave Vector Matching in Grating-Coupled Surface Plasmon Resonance. Mahmood R, Johnson MB, Hillier AC. Anal Chem; 2019 Jul 02; 91(13):8350-8357. PubMed ID: 31140785 [Abstract] [Full Text] [Related]
6. Enhancement of Long-Range Surface Plasmon Excitation, Dynamic Range and Figure of Merit Using a Dielectric Resonant Cavity. Suvarnaphaet P, Pechprasarn S. Sensors (Basel); 2018 Aug 22; 18(9):. PubMed ID: 30131469 [Abstract] [Full Text] [Related]
9. Short and long range surface plasmon polariton waveguides for xylene sensing. Brigo L, Gazzola E, Cittadini M, Zilio P, Zacco G, Romanato F, Martucci A, Guglielmi M, Brusatin G. Nanotechnology; 2013 Apr 19; 24(15):155502. PubMed ID: 23518462 [Abstract] [Full Text] [Related]
14. Coupled plasmon-waveguide resonators: a new spectroscopic tool for probing proteolipid film structure and properties. Salamon Z, Macleod HA, Tollin G. Biophys J; 1997 Nov 19; 73(5):2791-7. PubMed ID: 9370473 [Abstract] [Full Text] [Related]
15. Metal-Dielectric Waveguides for High Efficiency Coupled Emission. Badugu R, Szmacinski H, Ray K, Descrovi E, Ricciardi S, Zhang D, Chen J, Huo Y, Lakowicz JR. ACS Photonics; 2015 Jun 26; 2(7):810-815. PubMed ID: 26523286 [Abstract] [Full Text] [Related]
18. Analysis of optical waveguides with ultra-thin metal film based on the multidomain pseudospectral frequency-domain method. Chiang PJ, Chiang YC, Sun NH, Hong SX. Opt Express; 2011 Feb 28; 19(5):4324-36. PubMed ID: 21369263 [Abstract] [Full Text] [Related]