These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The effect of coil type and limb dominance in the assessment of lower-limb motor cortex excitability using TMS. Dharmadasa T, Matamala JM, Howells J, Simon NG, Vucic S, Kiernan MC. Neurosci Lett; 2019 Apr 23; 699():84-90. PubMed ID: 30710665 [Abstract] [Full Text] [Related]
5. Downregulating Aberrant Motor Evoked Potential Synergies of the Lower Extremity Post Stroke During TMS of the Contralesional Hemisphere. Tan AQ, Shemmell J, Dhaher YY. Brain Stimul; 2016 Nov 01; 9(3):396-405. PubMed ID: 26927733 [Abstract] [Full Text] [Related]
7. Differential corticomotor mechanisms of ankle motor control in post stroke individuals with and without motor evoked potentials. Lim H, Madhavan S. Brain Res; 2020 Jul 15; 1739():146833. PubMed ID: 32298662 [Abstract] [Full Text] [Related]
8. Convergence of flexor reflex and corticospinal inputs on tibialis anterior network in humans. Mackey AS, Uttaro D, McDonough MP, Krivis LI, Knikou M. Clin Neurophysiol; 2016 Jan 15; 127(1):706-715. PubMed ID: 26122072 [Abstract] [Full Text] [Related]
9. Absence of a Transcranial Magnetic Stimulation-Induced Lower Limb Corticomotor Response Does Not Affect Walking Speed in Chronic Stroke Survivors. Sivaramakrishnan A, Madhavan S. Stroke; 2018 Aug 15; 49(8):2004-2007. PubMed ID: 29986928 [Abstract] [Full Text] [Related]
11. Effects of posture and coactivation on corticomotor excitability of ankle muscles. Kesar TM, Eicholtz S, Lin BJ, Wolf SL, Borich MR. Restor Neurol Neurosci; 2018 Aug 15; 36(1):131-146. PubMed ID: 29439363 [Abstract] [Full Text] [Related]
12. Corticomotor excitability changes seen in the resting forearm during contralateral rhythmical movement and force manipulations: a TMS study. Ibey RJ, Staines WR. Behav Brain Res; 2013 Nov 15; 257():265-74. PubMed ID: 24070855 [Abstract] [Full Text] [Related]
13. Motor overflow in the lower limb after stroke: Insights into mechanisms. Cleland BT, Madhavan S. Eur J Neurosci; 2022 Aug 15; 56(4):4455-4468. PubMed ID: 35775788 [Abstract] [Full Text] [Related]
15. Towards assessing corticospinal excitability bilaterally: Validation of a double-coil TMS method. Grandjean J, Derosiere G, Vassiliadis P, Quemener L, Wilde Y, Duque J. J Neurosci Methods; 2018 Jan 01; 293():162-168. PubMed ID: 28962906 [Abstract] [Full Text] [Related]
16. The effects of transcranial stimulation on paretic lower limb motor excitability during walking. Jayaram G, Stinear JW. J Clin Neurophysiol; 2009 Aug 01; 26(4):272-9. PubMed ID: 19584748 [Abstract] [Full Text] [Related]
17. Effects of transcranial direct current stimulation on the excitability of the leg motor cortex. Jeffery DT, Norton JA, Roy FD, Gorassini MA. Exp Brain Res; 2007 Sep 01; 182(2):281-7. PubMed ID: 17717651 [Abstract] [Full Text] [Related]
18. Multipulse transcranial magnetic stimulation of human motor cortex produces short-latency corticomotor facilitation via two distinct mechanisms. Kesselheim J, Takemi M, Christiansen L, Karabanov AN, Siebner HR. J Neurophysiol; 2023 Feb 01; 129(2):410-420. PubMed ID: 36629338 [Abstract] [Full Text] [Related]
19. Transcutaneous spinal direct current stimulation modulates human corticospinal system excitability. Bocci T, Marceglia S, Vergari M, Cognetto V, Cogiamanian F, Sartucci F, Priori A. J Neurophysiol; 2015 Jul 01; 114(1):440-6. PubMed ID: 25925328 [Abstract] [Full Text] [Related]
20. Role of sustained excitability of the leg motor cortex after transcranial magnetic stimulation in associative plasticity. Roy FD, Norton JA, Gorassini MA. J Neurophysiol; 2007 Aug 01; 98(2):657-67. PubMed ID: 17537908 [Abstract] [Full Text] [Related] Page: [Next] [New Search]