These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


218 related items for PubMed ID: 27840972

  • 41. Age exacerbates microglial activation, oxidative stress, inflammatory and NOX2 gene expression, and delays functional recovery in a middle-aged rodent model of spinal cord injury.
    von Leden RE, Khayrullina G, Moritz KE, Byrnes KR.
    J Neuroinflammation; 2017 Aug 18; 14(1):161. PubMed ID: 28821269
    [Abstract] [Full Text] [Related]

  • 42. HBO-PC Promotes Locomotor Recovery by Reducing Apoptosis and Inflammation in SCI Rats: The Role of the mTOR Signaling Pathway.
    Chen H, Xu G, Wu Y, Wang X, Wang F, Zhang Y.
    Cell Mol Neurobiol; 2021 Oct 18; 41(7):1537-1547. PubMed ID: 32715402
    [Abstract] [Full Text] [Related]

  • 43.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 44. Montelukast inhibits caspase-3 activity and ameliorates oxidative damage in the spinal cord and urinary bladder of rats with spinal cord injury.
    Erşahin M, Çevik Ö, Akakın D, Şener A, Özbay L, Yegen BC, Şener G.
    Prostaglandins Other Lipid Mediat; 2012 Dec 18; 99(3-4):131-9. PubMed ID: 22986158
    [Abstract] [Full Text] [Related]

  • 45.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 46. The effect of glutamine on locomotor performance and skeletal muscle myosins following spinal cord injury in rats.
    Golding JD, Rigley MacDonald ST, Juurlink BH, Rosser BW.
    J Appl Physiol (1985); 2006 Oct 18; 101(4):1045-52. PubMed ID: 16778003
    [Abstract] [Full Text] [Related]

  • 47. Activation of SIRT1 by hyperbaric oxygenation promotes recovery of motor dysfunction in spinal cord injury rats.
    Chen H, Xing R, Yin X, Huang H.
    Int J Neurosci; 2023 Dec 18; ():1-11. PubMed ID: 37982284
    [Abstract] [Full Text] [Related]

  • 48. Effect of hyperbaric oxygen therapy on HMGB1/NF-κB expression and prognosis of acute spinal cord injury: A randomized clinical trial.
    Sun L, Zhao L, Li P, Liu X, Liang F, Jiang Y, Kang N, Gao C, Yang J.
    Neurosci Lett; 2019 Jan 23; 692():47-52. PubMed ID: 30391318
    [Abstract] [Full Text] [Related]

  • 49. C-C motif chemokine ligand 20 regulates neuroinflammation following spinal cord injury via Th17 cell recruitment.
    Hu J, Yang Z, Li X, Lu H.
    J Neuroinflammation; 2016 Jun 23; 13(1):162. PubMed ID: 27334337
    [Abstract] [Full Text] [Related]

  • 50. Recovery of spinal cord injury following electroacupuncture in rats through enhancement of Wnt/β-catenin signaling.
    Zhang J, Li S, Wu Y.
    Mol Med Rep; 2017 Aug 23; 16(2):2185-2190. PubMed ID: 28627669
    [Abstract] [Full Text] [Related]

  • 51. Protection of erythropoietin on experimental spinal cord injury by reducing the expression of thrombospondin-1 and transforming growth factor-beta.
    Fang XQ, Fang M, Fan SW, Gu CL.
    Chin Med J (Engl); 2009 Jul 20; 122(14):1631-5. PubMed ID: 19719963
    [Abstract] [Full Text] [Related]

  • 52. Oxygen therapy attenuates neuroinflammation after spinal cord injury.
    Sunshine MD, Bindi VE, Nguyen BL, Doerr V, Boeno FP, Chandran V, Smuder AJ, Fuller DD.
    J Neuroinflammation; 2023 Dec 19; 20(1):303. PubMed ID: 38110993
    [Abstract] [Full Text] [Related]

  • 53. Neuroprotective effects and impact on caspase-12 expression of tauroursodeoxycholic acid after acute spinal cord injury in rats.
    Dong Y, Miao L, Hei L, Lin L, Ding H.
    Int J Clin Exp Pathol; 2015 Dec 19; 8(12):15871-8. PubMed ID: 26884858
    [Abstract] [Full Text] [Related]

  • 54. Effects of calcitriol on experimental spinal cord injury in rats.
    Zhou KL, Chen DH, Jin HM, Wu K, Wang XY, Xu HZ, Zhang XL.
    Spinal Cord; 2016 Jul 19; 54(7):510-6. PubMed ID: 26729579
    [Abstract] [Full Text] [Related]

  • 55. Comprehensive analysis of the differential expression profile of microRNAs in rats with spinal cord injury treated by electroacupuncture.
    Zhou Z, Li H, Li H, Zhang J, Fu K, Cao C, Deng F, Luo J.
    Mol Med Rep; 2020 Aug 19; 22(2):751-762. PubMed ID: 32468009
    [Abstract] [Full Text] [Related]

  • 56. Simvastatin treatment improves functional recovery after experimental spinal cord injury by upregulating the expression of BDNF and GDNF.
    Han X, Yang N, Xu Y, Zhu J, Chen Z, Liu Z, Dang G, Song C.
    Neurosci Lett; 2011 Jan 10; 487(3):255-9. PubMed ID: 20851742
    [Abstract] [Full Text] [Related]

  • 57. Hyperbaric oxygen therapy and coenzyme Q10 synergistically attenuates damage progression in spinal cord injury in a rat model.
    Ghaemi A, Ghiasvand M, Omraninava M, Merza MY, Alkhafaji AT, Raoofi A, Nasiry D, Darvishi M, Akhavan-Sigari R.
    J Chem Neuroanat; 2023 Oct 10; 132():102322. PubMed ID: 37536632
    [Abstract] [Full Text] [Related]

  • 58. Human Placental Mesenchymal Stem Cell-derived Exosomes in Combination with Hyperbaric Oxygen Synergistically Promote Recovery after Spinal Cord Injury in Rats.
    Cheshmi H, Mohammadi H, Akbari M, Nasiry D, Rezapour-Nasrabad R, Bagheri M, Abouhamzeh B, Poorhassan M, Mirhoseini M, Mokhtari H, Akbari E, Raoofi A.
    Neurotox Res; 2023 Oct 10; 41(5):431-445. PubMed ID: 37155125
    [Abstract] [Full Text] [Related]

  • 59. Myelotomy reduces spinal cord edema and inhibits aquaporin-4 and aquaporin-9 expression in rats with spinal cord injury.
    Hu AM, Li JJ, Sun W, Yang DG, Yang ML, Du LJ, Gu R, Gao F, Li J, Chu HY, Zhang X, Gao LJ.
    Spinal Cord; 2015 Feb 10; 53(2):98-102. PubMed ID: 25448191
    [Abstract] [Full Text] [Related]

  • 60. Hyperbaric Oxygen Treatment Following Mid-Cervical Spinal Cord Injury Preserves Diaphragm Muscle Function.
    Smuder AJ, Turner SM, Schuster CM, Morton AB, Hinkley JM, Fuller DD.
    Int J Mol Sci; 2020 Sep 30; 21(19):. PubMed ID: 33007822
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.