These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches. Khalid SG, Zhang J, Chen F, Zheng D. J Healthc Eng; 2018; 2018():1548647. PubMed ID: 30425819 [Abstract] [Full Text] [Related]
4. Enhancing the estimation of blood pressure using pulse arrival time and two confounding factors. Baek HJ, Kim KK, Kim JS, Lee B, Park KS. Physiol Meas; 2010 Feb; 31(2):145-57. PubMed ID: 20009186 [Abstract] [Full Text] [Related]
5. Robust blood pressure estimation from finger photoplethysmography using age-dependent linear models. Xing X, Ma Z, Zhang M, Gao X, Li Y, Song M, Dong WF. Physiol Meas; 2020 Mar 09; 41(2):025007. PubMed ID: 32050194 [Abstract] [Full Text] [Related]
6. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals. Zhang Q, Zhou D, Zeng X. Biomed Eng Online; 2017 Feb 06; 16(1):23. PubMed ID: 28166774 [Abstract] [Full Text] [Related]
7. Pulse arrival time (PAT) measurement based on arm ECG and finger PPG signals - comparison of PPG feature detection methods for PAT calculation. Rajala S, Ahmaniemi T, Lindholm H, Taipalus T. Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul 06; 2017():250-253. PubMed ID: 29059857 [Abstract] [Full Text] [Related]
10. Photoplethysmography Fast Upstroke Time Intervals Can Be Useful Features for Cuff-Less Measurement of Blood Pressure Changes in Humans. Natarajan K, Block RC, Yavarimanesh M, Chandrasekhar A, Mestha LK, Inan OT, Hahn JO, Mukkamala R. IEEE Trans Biomed Eng; 2022 Jan 06; 69(1):53-62. PubMed ID: 34097603 [Abstract] [Full Text] [Related]
11. A Chair-Based Unobtrusive Cuffless Blood Pressure Monitoring System Based on Pulse Arrival Time. Tang Z, Tamura T, Sekine M, Huang M, Chen W, Yoshida M, Sakatani K, Kobayashi H, Kanaya S. IEEE J Biomed Health Inform; 2017 Sep 06; 21(5):1194-1205. PubMed ID: 28113527 [Abstract] [Full Text] [Related]
16. Effects of cuff inflation and deflation on pulse transit time measured from ECG and multi-wavelength PPG. Liu J, Li Y, Ding XR, Dai WX, Zhang YT. Annu Int Conf IEEE Eng Med Biol Soc; 2015 Feb 26; 2015():5973-6. PubMed ID: 26737652 [Abstract] [Full Text] [Related]
17. A Comparison of Wearable Tonometry, Photoplethysmography, and Electrocardiography for Cuffless Measurement of Blood Pressure in an Ambulatory Setting. Mieloszyk R, Twede H, Lester J, Wander J, Basu S, Cohn G, Smith G, Morris D, Gupta S, Tan D, Villar N, Wolf M, Malladi S, Mickelson M, Ryan L, Kim L, Kepple J, Kirchner S, Wampler E, Terada R, Robinson J, Paulsen R, Saponas TS. IEEE J Biomed Health Inform; 2022 Jul 26; 26(7):2864-2875. PubMed ID: 35201992 [Abstract] [Full Text] [Related]
18. An algorithm to detect dicrotic notch in arterial blood pressure and photoplethysmography waveforms using the iterative envelope mean method. Pal R, Rudas A, Kim S, Chiang JN, Barney A, Cannesson M. Comput Methods Programs Biomed; 2024 Sep 26; 254():108283. PubMed ID: 38901273 [Abstract] [Full Text] [Related]
19. Feasibility study for the non-invasive blood pressure estimation based on ppg morphology: normotensive subject study. Shin H, Min SD. Biomed Eng Online; 2017 Jan 10; 16(1):10. PubMed ID: 28086939 [Abstract] [Full Text] [Related]
20. Hybrid CNN-SVR Blood Pressure Estimation Model Using ECG and PPG Signals. Rastegar S, Gholam Hosseini H, Lowe A. Sensors (Basel); 2023 Jan 22; 23(3):. PubMed ID: 36772300 [Abstract] [Full Text] [Related] Page: [Next] [New Search]