These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1105 related items for PubMed ID: 27843095

  • 1. Branched Chain Amino Acids Cause Liver Injury in Obese/Diabetic Mice by Promoting Adipocyte Lipolysis and Inhibiting Hepatic Autophagy.
    Zhang F, Zhao S, Yan W, Xia Y, Chen X, Wang W, Zhang J, Gao C, Peng C, Yan F, Zhao H, Lian K, Lee Y, Zhang L, Lau WB, Ma X, Tao L.
    EBioMedicine; 2016 Nov; 13():157-167. PubMed ID: 27843095
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Branched-chain amino acids prevent hepatic fibrosis and development of hepatocellular carcinoma in a non-alcoholic steatohepatitis mouse model.
    Takegoshi K, Honda M, Okada H, Takabatake R, Matsuzawa-Nagata N, Campbell JS, Nishikawa M, Shimakami T, Shirasaki T, Sakai Y, Yamashita T, Takamura T, Tanaka T, Kaneko S.
    Oncotarget; 2017 Mar 14; 8(11):18191-18205. PubMed ID: 28212548
    [Abstract] [Full Text] [Related]

  • 4. Cross-talk between branched-chain amino acids and hepatic mitochondria is compromised in nonalcoholic fatty liver disease.
    Sunny NE, Kalavalapalli S, Bril F, Garrett TJ, Nautiyal M, Mathew JT, Williams CM, Cusi K.
    Am J Physiol Endocrinol Metab; 2015 Aug 15; 309(4):E311-9. PubMed ID: 26058864
    [Abstract] [Full Text] [Related]

  • 5. Glial Cell Line-Derived Neurotrophic Factor Enhances Autophagic Flux in Mouse and Rat Hepatocytes and Protects Against Palmitate Lipotoxicity.
    Mwangi SM, Li G, Ye L, Liu Y, Reichardt F, Yeligar SM, Hart CM, Czaja MJ, Srinivasan S.
    Hepatology; 2019 Jun 15; 69(6):2455-2470. PubMed ID: 30715741
    [Abstract] [Full Text] [Related]

  • 6. Branched-chain amino acids alleviate hepatic steatosis and liver injury in choline-deficient high-fat diet induced NASH mice.
    Honda T, Ishigami M, Luo F, Lingyun M, Ishizu Y, Kuzuya T, Hayashi K, Nakano I, Ishikawa T, Feng GG, Katano Y, Kohama T, Kitaura Y, Shimomura Y, Goto H, Hirooka Y.
    Metabolism; 2017 Apr 15; 69():177-187. PubMed ID: 28285648
    [Abstract] [Full Text] [Related]

  • 7. Palmitoleic Acid Decreases Non-alcoholic Hepatic Steatosis and Increases Lipogenesis and Fatty Acid Oxidation in Adipose Tissue From Obese Mice.
    Cruz MM, Simão JJ, de Sá RDCC, Farias TSM, da Silva VS, Abdala F, Antraco VJ, Armelin-Correa L, Alonso-Vale MIC.
    Front Endocrinol (Lausanne); 2020 Apr 15; 11():537061. PubMed ID: 33117273
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Diabetes and branched-chain amino acids: What is the link?
    Bloomgarden Z.
    J Diabetes; 2018 May 15; 10(5):350-352. PubMed ID: 29369529
    [Abstract] [Full Text] [Related]

  • 11. Free fatty acids, not triglycerides, are associated with non-alcoholic liver injury progression in high fat diet induced obese rats.
    Liu J, Han L, Zhu L, Yu Y.
    Lipids Health Dis; 2016 Feb 11; 15():27. PubMed ID: 26868515
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Green tea polyphenols ameliorate non-alcoholic fatty liver disease through upregulating AMPK activation in high fat fed Zucker fatty rats.
    Tan Y, Kim J, Cheng J, Ong M, Lao WG, Jin XL, Lin YG, Xiao L, Zhu XQ, Qu XQ.
    World J Gastroenterol; 2017 Jun 07; 23(21):3805-3814. PubMed ID: 28638220
    [Abstract] [Full Text] [Related]

  • 14. Leonurus japonicus Houtt Attenuates Nonalcoholic Fatty Liver Disease in Free Fatty Acid-Induced HepG2 Cells and Mice Fed a High-Fat Diet.
    Lee MR, Park KI, Ma JY.
    Nutrients; 2017 Dec 25; 10(1):. PubMed ID: 29295591
    [Abstract] [Full Text] [Related]

  • 15. [Liraglutide protects against nonalcoholic fatty liver disease in ApoE knockout mice with high-fat diet and silenced Acrp30 by increasing AMPK].
    Zhao XY, Zhang LL, Suolang QZ, Yang GY, Li L, Li SB, Chen WW.
    Zhonghua Gan Zang Bing Za Zhi; 2014 Nov 25; 22(11):849-53. PubMed ID: 25531383
    [Abstract] [Full Text] [Related]

  • 16. Chronic administration of recombinant IL-6 upregulates lipogenic enzyme expression and aggravates high-fat-diet-induced steatosis in IL-6-deficient mice.
    Vida M, Gavito AL, Pavón FJ, Bautista D, Serrano A, Suarez J, Arrabal S, Decara J, Romero-Cuevas M, Rodríguez de Fonseca F, Baixeras E.
    Dis Model Mech; 2015 Jul 01; 8(7):721-31. PubMed ID: 26035386
    [Abstract] [Full Text] [Related]

  • 17. Hepatocyte-Specific Disruption of CD36 Attenuates Fatty Liver and Improves Insulin Sensitivity in HFD-Fed Mice.
    Wilson CG, Tran JL, Erion DM, Vera NB, Febbraio M, Weiss EJ.
    Endocrinology; 2016 Feb 01; 157(2):570-85. PubMed ID: 26650570
    [Abstract] [Full Text] [Related]

  • 18. Wheat-bran autolytic peptides containing a branched-chain amino acid attenuate non-alcoholic steatohepatitis via the suppression of oxidative stress and the upregulation of AMPK/ACC in high-fat diet-fed mice.
    Kawaguchi T, Ueno T, Nogata Y, Hayakawa M, Koga H, Torimura T.
    Int J Mol Med; 2017 Feb 01; 39(2):407-414. PubMed ID: 28000843
    [Abstract] [Full Text] [Related]

  • 19. Targeting arginase-II protects mice from high-fat-diet-induced hepatic steatosis through suppression of macrophage inflammation.
    Liu C, Rajapakse AG, Riedo E, Fellay B, Bernhard MC, Montani JP, Yang Z, Ming XF.
    Sci Rep; 2016 Feb 05; 6():20405. PubMed ID: 26846206
    [Abstract] [Full Text] [Related]

  • 20. Sulforaphane induces lipophagy through the activation of AMPK-mTOR-ULK1 pathway signaling in adipocytes.
    Masuda M, Yoshida-Shimizu R, Mori Y, Ohnishi K, Adachi Y, Sakai M, Kabutoya S, Ohminami H, Yamanaka-Okumura H, Yamamoto H, Miyazaki M, Taketani Y.
    J Nutr Biochem; 2022 Aug 05; 106():109017. PubMed ID: 35461903
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 56.