These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
240 related items for PubMed ID: 27852729
1. Functional role of airflow-sensing hairs on the bat wing. Sterbing-D'Angelo SJ, Chadha M, Marshall KL, Moss CF. J Neurophysiol; 2017 Feb 01; 117(2):705-712. PubMed ID: 27852729 [Abstract] [Full Text] [Related]
2. Morphology and deflection properties of bat wing sensory hairs: scanning electron microscopy, laser scanning vibrometry, and mechanics model. Sterbing-D'Angelo SJ, Liu H, Yu M, Moss CF. Bioinspir Biomim; 2016 Aug 22; 11(5):056008. PubMed ID: 27545727 [Abstract] [Full Text] [Related]
3. Bat wing sensors support flight control. Sterbing-D'Angelo S, Chadha M, Chiu C, Falk B, Xian W, Barcelo J, Zook JM, Moss CF. Proc Natl Acad Sci U S A; 2011 Jul 05; 108(27):11291-6. PubMed ID: 21690408 [Abstract] [Full Text] [Related]
4. Somatosensory substrates of flight control in bats. Marshall KL, Chadha M, deSouza LA, Sterbing-D'Angelo SJ, Moss CF, Lumpkin EA. Cell Rep; 2015 May 12; 11(6):851-858. PubMed ID: 25937277 [Abstract] [Full Text] [Related]
5. Organization of the primary somatosensory cortex and wing representation in the Big Brown Bat, Eptesicus fuscus. Chadha M, Moss CF, Sterbing-D'Angelo SJ. J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Jan 12; 197(1):89-96. PubMed ID: 20878405 [Abstract] [Full Text] [Related]
6. Ventral wing hairs provide tactile feedback for aerial prey capture in the big brown bat, Eptesicus fuscus. Boublil BL, Yu C, Shewmaker G, Sterbing S, Moss CF. J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 Sep 12; 210(5):761-770. PubMed ID: 38097720 [Abstract] [Full Text] [Related]
7. Sensory biology: bats feel the air flow. Jones G. Curr Biol; 2011 Sep 13; 21(17):R666-7. PubMed ID: 21920300 [Abstract] [Full Text] [Related]
8. Hair, there and everywhere: A comparison of bat wing sensory hair distribution. Rummel AD, Sierra MM, Quinn BL, Swartz SM. Anat Rec (Hoboken); 2023 Nov 13; 306(11):2681-2692. PubMed ID: 36790015 [Abstract] [Full Text] [Related]
9. Effects of Inertial Power and Inertial Force on Bat Wings. Yin D, Zhang Z, Dai M. Zoolog Sci; 2016 Jun 13; 33(3):239-45. PubMed ID: 27268977 [Abstract] [Full Text] [Related]
10. Flapping wing aerodynamics: from insects to vertebrates. Chin DD, Lentink D. J Exp Biol; 2016 Apr 13; 219(Pt 7):920-32. PubMed ID: 27030773 [Abstract] [Full Text] [Related]
11. Direct Measurements of the Wing Kinematics of a Bat in Straight Flight. Singh SK, Zhang LB, Zhao JS. J Biomech Eng; 2021 Apr 01; 143(4):. PubMed ID: 33210129 [Abstract] [Full Text] [Related]
12. Bat-inspired integrally actuated membrane wings with leading-edge sensing. Buoso S, Dickinson BT, Palacios R. Bioinspir Biomim; 2017 Dec 28; 13(1):016013. PubMed ID: 29283112 [Abstract] [Full Text] [Related]
13. Falling with Style: Bats Perform Complex Aerial Rotations by Adjusting Wing Inertia. Bergou AJ, Swartz SM, Vejdani H, Riskin DK, Reimnitz L, Taubin G, Breuer KS. PLoS Biol; 2015 Dec 28; 13(11):e1002297. PubMed ID: 26569116 [Abstract] [Full Text] [Related]
14. Bat flight: aerodynamics, kinematics and flight morphology. Hedenström A, Johansson LC. J Exp Biol; 2015 Mar 28; 218(Pt 5):653-63. PubMed ID: 25740899 [Abstract] [Full Text] [Related]
15. Lift enhancement by bats' dynamically changing wingspan. Wang S, Zhang X, He G, Liu T. J R Soc Interface; 2015 Dec 06; 12(113):20150821. PubMed ID: 26701882 [Abstract] [Full Text] [Related]
16. Effects of wing damage and moult gaps on vertebrate flight performance. Hedenström A. J Exp Biol; 2023 May 01; 226(9):. PubMed ID: 37132410 [Abstract] [Full Text] [Related]
17. Analysis of a 180-degree U-turn maneuver executed by a hipposiderid bat. Windes P, Tafti DK, Müller R. PLoS One; 2020 May 01; 15(11):e0241489. PubMed ID: 33141874 [Abstract] [Full Text] [Related]
18. Wing hair sensilla underlying aimed hindleg scratching of the locust. Page KL, Matheson T. J Exp Biol; 2004 Jul 01; 207(Pt 15):2691-703. PubMed ID: 15201302 [Abstract] [Full Text] [Related]
19. Leading-edge vortex improves lift in slow-flying bats. Muijres FT, Johansson LC, Barfield R, Wolf M, Spedding GR, Hedenström A. Science; 2008 Feb 29; 319(5867):1250-3. PubMed ID: 18309085 [Abstract] [Full Text] [Related]
20. A wrinkle in flight: the role of elastin fibres in the mechanical behaviour of bat wing membranes. Cheney JA, Konow N, Bearnot A, Swartz SM. J R Soc Interface; 2015 May 06; 12(106):. PubMed ID: 25833238 [Abstract] [Full Text] [Related] Page: [Next] [New Search]