These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
543 related items for PubMed ID: 27855634
1. Identification of novel targets of diabetic nephropathy and PEDF peptide treatment using RNA-seq. Rubin A, Salzberg AC, Imamura Y, Grivitishvilli A, Tombran-Tink J. BMC Genomics; 2016 Nov 17; 17(1):936. PubMed ID: 27855634 [Abstract] [Full Text] [Related]
2. Delayed Treatment with a Small Pigment Epithelium Derived Factor (PEDF) Peptide Prevents the Progression of Diabetic Renal Injury. Awad AS, You H, Gao T, Gvritishvili A, Cooper TK, Tombran-Tink J. PLoS One; 2015 Nov 17; 10(7):e0133777. PubMed ID: 26207369 [Abstract] [Full Text] [Related]
3. PEDF relieves kidney injury in type 2 diabetic nephropathy mice by reducing macrophage infiltration. Li L, Zhang L, Chen D, Yu K, Gan H, Yang G. Endokrynol Pol; 2021 Nov 17; 72(6):643-651. PubMed ID: 34647607 [Abstract] [Full Text] [Related]
4. Genomic expression profiling and bioinformatics analysis on diabetic nephrology with ginsenoside Rg3. Wang J, Cui C, Fu L, Xiao Z, Xie N, Liu Y, Yu L, Wang H, Luo B. Mol Med Rep; 2016 Aug 17; 14(2):1162-72. PubMed ID: 27279428 [Abstract] [Full Text] [Related]
5. Protective role of small pigment epithelium-derived factor (PEDF) peptide in diabetic renal injury. Awad AS, Gao T, Gvritishvili A, You H, Liu Y, Cooper TK, Reeves WB, Tombran-Tink J. Am J Physiol Renal Physiol; 2013 Sep 15; 305(6):F891-900. PubMed ID: 23884140 [Abstract] [Full Text] [Related]
6. Pigment epithelium-derived factor (PEDF) peptide eye drops reduce inflammation, cell death and vascular leakage in diabetic retinopathy in Ins2(Akita) mice. Liu Y, Leo LF, McGregor C, Grivitishvili A, Barnstable CJ, Tombran-Tink J. Mol Med; 2012 Dec 20; 18(1):1387-401. PubMed ID: 23019073 [Abstract] [Full Text] [Related]
7. Protective Role of PEDF-Derived Synthetic Peptide Against Experimental Diabetic Nephropathy. Ishibashi Y, Matsui T, Taira J, Higashimoto Y, Yamagishi S. Horm Metab Res; 2016 Sep 20; 48(9):613-9. PubMed ID: 27214310 [Abstract] [Full Text] [Related]
8. Pigment epithelium-derived factor, a noninhibitory serine protease inhibitor, is renoprotective by inhibiting the Wnt pathway. He X, Cheng R, Park K, Benyajati S, Moiseyev G, Sun C, Olson LE, Yang Y, Eby BK, Lau K, Ma JX. Kidney Int; 2017 Mar 20; 91(3):642-657. PubMed ID: 27914705 [Abstract] [Full Text] [Related]
10. Cardiac transcriptome profiling of diabetic Akita mice using microarray and next generation sequencing. Kesherwani V, Shahshahan HR, Mishra PK. PLoS One; 2017 Mar 20; 12(8):e0182828. PubMed ID: 28837672 [Abstract] [Full Text] [Related]
11. Anti-inflammatory effects of pigment epithelium-derived factor in diabetic nephropathy. Wang JJ, Zhang SX, Mott R, Chen Y, Knapp RR, Cao W, Ma JX. Am J Physiol Renal Physiol; 2008 May 20; 294(5):F1166-73. PubMed ID: 18322021 [Abstract] [Full Text] [Related]
12. RNA-Seq analysis reveals critical transcriptome changes caused by sodium butyrate in DN mouse models. Yang H, Zhang Z, Peng R, Zhang L, Liu H, Wang X, Tian Y, Sun Y. Biosci Rep; 2021 Apr 30; 41(4):. PubMed ID: 33779731 [Abstract] [Full Text] [Related]
13. Pigment epithelium-derived factor (PEDF) inhibits proximal tubular cell injury in early diabetic nephropathy by suppressing advanced glycation end products (AGEs)-receptor (RAGE) axis. Maeda S, Matsui T, Takeuchi M, Yoshida Y, Yamakawa R, Fukami K, Yamagishi S. Pharmacol Res; 2011 Mar 30; 63(3):241-8. PubMed ID: 21115116 [Abstract] [Full Text] [Related]
14. Prediction of the molecular mechanisms and potential therapeutic targets for diabetic nephropathy by bioinformatics methods. Wang WN, Zhang WL, Zhou GY, Ma FZ, Sun T, Su SS, Xu ZG. Int J Mol Med; 2016 May 30; 37(5):1181-8. PubMed ID: 26986014 [Abstract] [Full Text] [Related]
15. Whole transcriptome analysis of diabetic nephropathy in the db/db mouse model of type 2 diabetes. Wen L, Zhang Z, Peng R, Zhang L, Liu H, Peng H, Sun Y. J Cell Biochem; 2019 Oct 30; 120(10):17520-17533. PubMed ID: 31106482 [Abstract] [Full Text] [Related]
16. Urinary Exosomal miRNA Signature in Type II Diabetic Nephropathy Patients. Delić D, Eisele C, Schmid R, Baum P, Wiech F, Gerl M, Zimdahl H, Pullen SS, Urquhart R. PLoS One; 2016 Oct 30; 11(3):e0150154. PubMed ID: 26930277 [Abstract] [Full Text] [Related]
17. Whole transcriptome mapping reveals the lncRNA regulatory network of TFP5 treatment in diabetic nephropathy. Luo H, Yang L, Zhang G, Bao X, Ma D, Li B, Cao L, Cao S, Liu S, Bao L, E J, Zheng Y. Genes Genomics; 2024 May 30; 46(5):621-635. PubMed ID: 38536617 [Abstract] [Full Text] [Related]
18. RNA-Seq Analysis of ceRNA-Related Networks in the Regulatory Metabolic Pathway of Mice with Diabetic Nephropathy Subjected to Empagliflozin Intervention. Wu T, Zhang Z, Huang H, Wu X. Arch Esp Urol; 2023 Nov 30; 76(9):680-689. PubMed ID: 38053423 [Abstract] [Full Text] [Related]
19. RNA expression signatures and posttranscriptional regulation in diabetic nephropathy. Rudnicki M, Beckers A, Neuwirt H, Vandesompele J. Nephrol Dial Transplant; 2015 Aug 30; 30 Suppl 4():iv35-42. PubMed ID: 26209736 [Abstract] [Full Text] [Related]
20. Renoprotective effect of curcumin against the combined oxidative stress of diabetes and nicotine in rats. Ibrahim ZS, Alkafafy ME, Ahmed MM, Soliman MM. Mol Med Rep; 2016 Apr 30; 13(4):3017-26. PubMed ID: 26936435 [Abstract] [Full Text] [Related] Page: [Next] [New Search]