These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


147 related items for PubMed ID: 27859863

  • 1. The influence of very small doses of alpha radiation on the stability of erythrocytes.
    Kaczmarska M, Żydek D, Wilkłacz-Potoczny J, Fornal M, Grodzicki T, Kochowska E, Kozak K, Gocal Ł, Pohorecki W, Matlak K, Korecki J, Burda K.
    Microsc Res Tech; 2017 Jan; 80(1):131-143. PubMed ID: 27859863
    [Abstract] [Full Text] [Related]

  • 2. Effects of low doses of gamma rays on the stability of normal and diabetic erythrocytes.
    Kaczmarska M, Kopyściańska Z, Fornal M, Grodzicki T, Matlak K, Korecki J, Burda K.
    Acta Biochim Pol; 2011 Jan; 58(4):489-96. PubMed ID: 22068107
    [Abstract] [Full Text] [Related]

  • 3. The influence of radiation quality on radiation-induced hemolysis and hemoglobin oxidation of human erythrocytes.
    Puchała M, Szweda-Lewandowska Z, Kiefer J.
    J Radiat Res; 2004 Jun; 45(2):275-9. PubMed ID: 15304971
    [Abstract] [Full Text] [Related]

  • 4. The influence of split doses of gamma-radiation on human erythrocytes.
    Koziczak R, Gonciarz M, Krokosz A, Szweda-Lewandowska Z.
    J Radiat Res; 2003 Sep; 44(3):217-22. PubMed ID: 14646224
    [Abstract] [Full Text] [Related]

  • 5. Multifractal characterization of morphology of human red blood cells membrane skeleton.
    Ţălu Ş, Stach S, Kaczmarska M, Fornal M, Grodzicki T, Pohorecki W, Burda K.
    J Microsc; 2016 Apr; 262(1):59-72. PubMed ID: 27002485
    [Abstract] [Full Text] [Related]

  • 6. Oxidative stress-induced posttranslational modifications of human hemoglobin in erythrocytes.
    Xiang W, Weisbach V, Sticht H, Seebahn A, Bussmann J, Zimmermann R, Becker CM.
    Arch Biochem Biophys; 2013 Jan 01; 529(1):34-44. PubMed ID: 23201302
    [Abstract] [Full Text] [Related]

  • 7. Nano alterations of membrane structure on both γ-irradiated and stored human erythrocytes.
    Acosta-Elías MA, Burgara-Estrella AJ, Sarabia-Sainz JA, Silva-Campa E, Angulo-Molina A, Santacruz-Gómez KJ, Castaneda B, Soto-Puebla D, Ledesma-Osuna AI, Melendrez-Amavizca R, Pedroza-Montero M.
    Int J Radiat Biol; 2017 Dec 01; 93(12):1306-1311. PubMed ID: 29034757
    [Abstract] [Full Text] [Related]

  • 8. The effect of hypochlorite on human erythrocytes pretreated with X-radiation.
    Krokosz A.
    Cell Mol Biol Lett; 2003 Dec 01; 8(1):215-9. PubMed ID: 12655375
    [Abstract] [Full Text] [Related]

  • 9. Effect of UVB radiation on human erythrocytes in vitro.
    Misra RB, Ray RS, Hans RK.
    Toxicol In Vitro; 2005 Apr 01; 19(3):433-8. PubMed ID: 15713550
    [Abstract] [Full Text] [Related]

  • 10. [Radiation-induced changes in structural state of membranes of human blood cells].
    Burlakova EB, Atkarskaia MV, Fatkullina LD, Andreev SG.
    Radiats Biol Radioecol; 2014 Apr 01; 54(2):162-8. PubMed ID: 25764817
    [Abstract] [Full Text] [Related]

  • 11. Carboxylated nanodiamonds inhibit γ-irradiation damage of human red blood cells.
    Santacruz-Gomez K, Silva-Campa E, Melendrez-Amavizca R, Teran Arce F, Mata-Haro V, Landon PB, Zhang C, Pedroza-Montero M, Lal R.
    Nanoscale; 2016 Apr 07; 8(13):7189-96. PubMed ID: 26972691
    [Abstract] [Full Text] [Related]

  • 12. Low-intensity near-infrared laser radiation-induced changes of acetylcholinesterase activity of human erythrocytes.
    Kujawa J, Zavodnik L, Zavodnik I, Bryszewska M.
    J Clin Laser Med Surg; 2003 Dec 07; 21(6):351-5. PubMed ID: 14709219
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Resistance of human erythrocytes containing elevated levels of vitamin E to radiation-induced hemolysis.
    Brown MA.
    Radiat Res; 1983 Aug 07; 95(2):303-16. PubMed ID: 6611850
    [Abstract] [Full Text] [Related]

  • 15. E.s.r. radiation studies of erythrocyte membrane haemoglobin interaction.
    Koter M, Kowalska MA, Leyko W, Waterman M.
    Int J Radiat Biol Relat Stud Phys Chem Med; 1977 Oct 07; 32(4):369-74. PubMed ID: 198386
    [Abstract] [Full Text] [Related]

  • 16. Atomic force microscopy study of red blood cell membrane nanostructure during oxidation-reduction processes.
    Kozlova E, Chernysh A, Sergunova V, Gudkova O, Manchenko E, Kozlov A.
    J Mol Recognit; 2018 Oct 07; 31(10):e2724. PubMed ID: 29740886
    [Abstract] [Full Text] [Related]

  • 17. Effect of low-intensity (3.75-25 J/cm2) near-infrared (810 nm) laser radiation on red blood cell ATPase activities and membrane structure.
    Kujawa J, Zavodnik L, Zavodnik I, Buko V, Lapshyna A, Bryszewska M.
    J Clin Laser Med Surg; 2004 Apr 07; 22(2):111-7. PubMed ID: 15165385
    [Abstract] [Full Text] [Related]

  • 18. [Low doses of ionizing radiation-induced apoptotic nature of erythrocyte hemolysis].
    Krylov VN, Deriugina AV, Pleskova SN, Kalinin VA.
    Biofizika; 2015 Apr 07; 60(1):102-8. PubMed ID: 25868347
    [Abstract] [Full Text] [Related]

  • 19. Ionizing radiation-induced structural modification of human red blood cells.
    Gwoździński K.
    Radiat Environ Biophys; 1991 Apr 07; 30(1):45-52. PubMed ID: 1848020
    [Abstract] [Full Text] [Related]

  • 20. [The diagnostic of membranes' state after exposure of gamma-radiation of small doses].
    Kozlova EK, Cherniaev AP, Alekseeva PIu, Blizniuk UA, Chernysh AM, Nazarova MA.
    Radiats Biol Radioecol; 2005 Apr 07; 45(6):653-6. PubMed ID: 16454330
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.