These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
113 related items for PubMed ID: 27861731
21. Bioleaching of copper from chalcopyrite ore by fungi. Rao DV, Shivannavar CT, Gaddad SM. Indian J Exp Biol; 2002 Mar; 40(3):319-24. PubMed ID: 12635703 [Abstract] [Full Text] [Related]
22. Development of copper recovery process from flotation tailings by a combined method of high‒pressure leaching‒solvent extraction. Han B, Altansukh B, Haga K, Stevanović Z, Jonović R, Avramović L, Urosević D, Takasaki Y, Masuda N, Ishiyama D, Shibayama A. J Hazard Mater; 2018 Jun 15; 352():192-203. PubMed ID: 29609151 [Abstract] [Full Text] [Related]
23. Thermal removal of arsenic from copper concentrates: Three-dimensional isothermal predominance diagrams for the Cu-As-S-O system. Safarzadeh MS, Howard SM. J Hazard Mater; 2018 Apr 05; 347():371-377. PubMed ID: 29335219 [Abstract] [Full Text] [Related]
24. An XPS analytical approach for elucidating the microbially mediated enargite oxidative dissolution. Fantauzzi M, Rossi G, Elsener B, Loi G, Atzei D, Rossi A. Anal Bioanal Chem; 2009 Apr 05; 393(8):1931-41. PubMed ID: 19229526 [Abstract] [Full Text] [Related]
25. Selective separation of pyrite and chalcopyrite by biomodulation. Chandraprabha MN, Natarajan KA, Modak JM. Colloids Surf B Biointerfaces; 2004 Sep 01; 37(3-4):93-100. PubMed ID: 15342018 [Abstract] [Full Text] [Related]
26. Evolution of copper arsenate resistance for enhanced enargite bioleaching using the extreme thermoacidophile Metallosphaera sedula. Ai C, McCarthy S, Liang Y, Rudrappa D, Qiu G, Blum P. J Ind Microbiol Biotechnol; 2017 Dec 01; 44(12):1613-1625. PubMed ID: 28770421 [Abstract] [Full Text] [Related]
27. The Enhancement of Enargite Dissolution by Sodium Hypochlorite in Ammoniacal Solutions. Velásquez-Yévenes L, Álvarez H, Quezada V, García A. Materials (Basel); 2021 Aug 12; 14(16):. PubMed ID: 34443052 [Abstract] [Full Text] [Related]
28. A brief review on computer simulations of chalcopyrite surfaces: structure and reactivity. Nascimento GR, Bazan SF, de Lima GF. Acta Crystallogr C Struct Chem; 2024 Sep 01; 80(Pt 9):458-471. PubMed ID: 39115532 [Abstract] [Full Text] [Related]
29. A critical review of the effects of gold cyanide-bearing tailings solutions on wildlife. Donato DB, Nichols O, Possingham H, Moore M, Ricci PF, Noller BN. Environ Int; 2007 Oct 01; 33(7):974-84. PubMed ID: 17540445 [Abstract] [Full Text] [Related]
30. Froth Flotation of Chalcopyrite/Pyrite Ore: A Critical Review. Castellón CI, Toro N, Gálvez E, Robles P, Leiva WH, Jeldres RI. Materials (Basel); 2022 Sep 21; 15(19):. PubMed ID: 36233879 [Abstract] [Full Text] [Related]
31. Thiol-Silylated Cellulose Nanocrystals as Selective Biodepressants in Froth Flotation. Ludovici F, Hartmann R, Rudolph M, Liimatainen H. ACS Sustain Chem Eng; 2023 Nov 13; 11(45):16176-16184. PubMed ID: 38022739 [Abstract] [Full Text] [Related]
32. Synergistic bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans. Zhao H, Wang J, Hu M, Qin W, Zhang Y, Qiu G. Bioresour Technol; 2013 Dec 13; 149():71-6. PubMed ID: 24084207 [Abstract] [Full Text] [Related]
33. Microbiological leaching of a chalcopyrite concentrate by Thiobacillus ferrooxidans. Sakaguchi H, Silver M. Biotechnol Bioeng; 1976 Aug 13; 18(8):1091-1101. PubMed ID: 953169 [Abstract] [Full Text] [Related]
34. Understanding the Interaction of Lignosulfonates for the Separation of Molybdenite and Chalcopyrite in Seawater Flotation Processes. Quiroz C, Murga R, Giraldo JD, Gutierrez L, Uribe L. Polymers (Basel); 2022 Jul 12; 14(14):. PubMed ID: 35890610 [Abstract] [Full Text] [Related]
35. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite. Li Y, Kawashima N, Li J, Chandra AP, Gerson AR. Adv Colloid Interface Sci; 2013 Sep 12; 197-198():1-32. PubMed ID: 23791420 [Abstract] [Full Text] [Related]
36. Pullulan Polysaccharide as an Eco-Friendly Depressant for Flotation Separation of Chalcopyrite and Molybdenite. Yang W, Qiu T, Qiu X, Yan H, Jiao Q, Ding K, Zhao G. ACS Omega; 2024 Jul 09; 9(27):29557-29565. PubMed ID: 39005824 [Abstract] [Full Text] [Related]
37. A chemical, morphological, and electrochemical (XPS, SEM/EDX, CV, and EIS) analysis of electrochemically modified electrode surfaces of natural chalcopyrite (CuFeS2) and pyrite (FeS2) in alkaline solutions. Velásquez P, Leinen D, Pascual J, Ramos-Barrado JR, Grez P, Gómez H, Schrebler R, Del Río R, Córdova R. J Phys Chem B; 2005 Mar 24; 109(11):4977-88. PubMed ID: 16863157 [Abstract] [Full Text] [Related]
38. Optimization of staged bioleaching of low-grade chalcopyrite ore in the presence and absence of chloride in the irrigating lixiviant: ANFIS simulation. Vakylabad AB, Schaffie M, Naseri A, Ranjbar M, Manafi Z. Bioprocess Biosyst Eng; 2016 Jul 24; 39(7):1081-104. PubMed ID: 27000968 [Abstract] [Full Text] [Related]
39. Effect of sodium chloride on sulfur speciation of chalcopyrite bioleached by the extreme thermophile Acidianus manzaensis. Chang-Li L, Jin-Lan X, Zhen-Yuan N, Yi Y, Chen-Yan M. Bioresour Technol; 2012 Apr 24; 110():462-7. PubMed ID: 22336739 [Abstract] [Full Text] [Related]
40. Fractal analysis to discriminate between biotic and abiotic attacks on chalcopyrite and pyrolusite. Cardone P, Ercole C, Breccia S, Lepidi A. J Microbiol Methods; 1999 May 24; 36(1-2):11-9. PubMed ID: 10353795 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]