These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


154 related items for PubMed ID: 27870064

  • 1. The effect of plant water storage on water fluxes within the coupled soil-plant system.
    Huang CW, Domec JC, Ward EJ, Duman T, Manoli G, Parolari AJ, Katul GG.
    New Phytol; 2017 Feb; 213(3):1093-1106. PubMed ID: 27870064
    [Abstract] [Full Text] [Related]

  • 2. Water relations in tree physiology: where to from here?
    Landsberg J, Waring R, Ryan M.
    Tree Physiol; 2017 Jan 31; 37(1):18-32. PubMed ID: 28173481
    [Abstract] [Full Text] [Related]

  • 3. Dynamic soil hydraulic resistance regulates stomata.
    Manandhar A, Rimer IM, Soares Pereira T, Pichaco J, Rockwell FE, McAdam SAM.
    New Phytol; 2024 Oct 31; 244(1):147-158. PubMed ID: 39096020
    [Abstract] [Full Text] [Related]

  • 4. Internal hydraulic redistribution prevents the loss of root conductivity during drought.
    Prieto I, Ryel RJ.
    Tree Physiol; 2014 Jan 31; 34(1):39-48. PubMed ID: 24436338
    [Abstract] [Full Text] [Related]

  • 5. Hydraulics and gas exchange recover more rapidly from severe drought stress in small pot-grown grapevines than in field-grown plants.
    Romero P, Botía P, Keller M.
    J Plant Physiol; 2017 Sep 31; 216():58-73. PubMed ID: 28577386
    [Abstract] [Full Text] [Related]

  • 6. Declining root water transport drives stomatal closure in olive under moderate water stress.
    Rodriguez-Dominguez CM, Brodribb TJ.
    New Phytol; 2020 Jan 31; 225(1):126-134. PubMed ID: 31498457
    [Abstract] [Full Text] [Related]

  • 7. Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits.
    Sperry JS, Wang Y, Wolfe BT, Mackay DS, Anderegg WR, McDowell NG, Pockman WT.
    New Phytol; 2016 Nov 31; 212(3):577-589. PubMed ID: 27329266
    [Abstract] [Full Text] [Related]

  • 8. Evaporation-driven internal hydraulic redistribution alleviates root drought stress: Mechanisms and modeling.
    Liu Y, Nadezhdina N, Hu W, Clothier B, Duan J, Li X, Xi B.
    Plant Physiol; 2023 Sep 22; 193(2):1058-1072. PubMed ID: 37350505
    [Abstract] [Full Text] [Related]

  • 9. Stomatal closure during water deficit is controlled by below-ground hydraulics.
    Abdalla M, Ahmed MA, Cai G, Wankmüller F, Schwartz N, Litig O, Javaux M, Carminati A.
    Ann Bot; 2022 Jan 28; 129(2):161-170. PubMed ID: 34871349
    [Abstract] [Full Text] [Related]

  • 10. A new look at water transport regulation in plants.
    Martínez-Vilalta J, Poyatos R, Aguadé D, Retana J, Mencuccini M.
    New Phytol; 2014 Oct 28; 204(1):105-115. PubMed ID: 24985503
    [Abstract] [Full Text] [Related]

  • 11. Soil Rather Than Xylem Vulnerability Controls Stomatal Response to Drought.
    Carminati A, Javaux M.
    Trends Plant Sci; 2020 Sep 28; 25(9):868-880. PubMed ID: 32376085
    [Abstract] [Full Text] [Related]

  • 12. Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution.
    Domec JC, Warren JM, Meinzer FC, Brooks JR, Coulombe R.
    Oecologia; 2004 Sep 28; 141(1):7-16. PubMed ID: 15338263
    [Abstract] [Full Text] [Related]

  • 13. Variation in embolism occurrence and repair along the stem in drought-stressed and re-watered seedlings of a poplar clone.
    Leng H, Lu M, Wan X.
    Physiol Plant; 2013 Mar 28; 147(3):329-39. PubMed ID: 22686493
    [Abstract] [Full Text] [Related]

  • 14. Stomatal behaviour and stem xylem traits are coordinated for woody plant species under exceptional drought conditions.
    Pivovaroff AL, Cook VMW, Santiago LS.
    Plant Cell Environ; 2018 Nov 28; 41(11):2617-2626. PubMed ID: 29904932
    [Abstract] [Full Text] [Related]

  • 15. Modelled hydraulic redistribution by sunflower (Helianthus annuus L.) matches observed data only after including night-time transpiration.
    Neumann RB, Cardon ZG, Teshera-Levye J, Rockwell FE, Zwieniecki MA, Holbrook NM.
    Plant Cell Environ; 2014 Apr 28; 37(4):899-910. PubMed ID: 24118010
    [Abstract] [Full Text] [Related]

  • 16. Interactive effects of elevated CO2 and drought on nocturnal water fluxes in Eucalyptus saligna.
    Zeppel MJ, Lewis JD, Medlyn B, Barton CV, Duursma RA, Eamus D, Adams MA, Phillips N, Ellsworth DS, Forster MA, Tissue DT.
    Tree Physiol; 2011 Sep 28; 31(9):932-44. PubMed ID: 21616926
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Interactive effects of nocturnal transpiration and climate change on the root hydraulic redistribution and carbon and water budgets of southern United States pine plantations.
    Domec JC, Ogée J, Noormets A, Jouangy J, Gavazzi M, Treasure E, Sun G, McNulty SG, King JS.
    Tree Physiol; 2012 Jun 28; 32(6):707-23. PubMed ID: 22467712
    [Abstract] [Full Text] [Related]

  • 19. Drought-induced shoot dieback starts with massive root xylem embolism and variable depletion of nonstructural carbohydrates in seedlings of two tree species.
    Rodríguez-Calcerrada J, Li M, López R, Cano FJ, Oleksyn J, Atkin OK, Pita P, Aranda I, Gil L.
    New Phytol; 2017 Jan 28; 213(2):597-610. PubMed ID: 27575435
    [Abstract] [Full Text] [Related]

  • 20. A novel root-to-shoot stomatal response to very high CO2 levels in the soil: electrical, hydraulic and biochemical signalling.
    Lake JA, Walker HJ, Cameron DD, Lomax BH.
    Physiol Plant; 2017 Apr 28; 159(4):433-444. PubMed ID: 27779760
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.