These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


144 related items for PubMed ID: 27871379

  • 1. Decolourisation of Acid orange 7 in a microbial fuel cell with a laccase-based biocathode: Influence of mitigating pH changes in the cathode chamber.
    Mani P, Keshavarz T, Chandra TS, Kyazze G.
    Enzyme Microb Technol; 2017 Jan; 96():170-176. PubMed ID: 27871379
    [Abstract] [Full Text] [Related]

  • 2. Microbial fuel cell with an azo-dye-feeding cathode.
    Liu L, Li FB, Feng CH, Li XZ.
    Appl Microbiol Biotechnol; 2009 Nov; 85(1):175-83. PubMed ID: 19649629
    [Abstract] [Full Text] [Related]

  • 3. Performance and microbial diversity of microbial fuel cells coupled with different cathode types during simultaneous azo dye decolorization and electricity generation.
    Hou B, Hu Y, Sun J.
    Bioresour Technol; 2012 May; 111():105-10. PubMed ID: 22386629
    [Abstract] [Full Text] [Related]

  • 4. Simultaneous co-metabolic decolourisation of azo dye mixtures and bio-electricity generation under thermophillic (50 °C) and saline conditions by an adapted anaerobic mixed culture in microbial fuel cells.
    Fernando E, Keshavarz T, Kyazze G.
    Bioresour Technol; 2013 Jan; 127():1-8. PubMed ID: 23131618
    [Abstract] [Full Text] [Related]

  • 5. Inducing laccase activity in white rot fungi using copper ions and improving the efficiency of azo dye treatment with electricity generation using microbial fuel cells.
    Liu SH, Tsai SL, Guo PY, Lin CW.
    Chemosphere; 2020 Mar; 243():125304. PubMed ID: 31715296
    [Abstract] [Full Text] [Related]

  • 6. Laccase Immobilization Strategies for Application as a Cathode Catalyst in Microbial Fuel Cells for Azo Dye Decolourization.
    Mani P, Fidal VT, Keshavarz T, Chandra TS, Kyazze G.
    Front Microbiol; 2020 Mar; 11():620075. PubMed ID: 33537019
    [Abstract] [Full Text] [Related]

  • 7. Ionic polymer-coated laccase with high activity and enhanced stability: application in the decolourisation of water containing AO7.
    Zhang X, Hua M, Lv L, Pan B.
    Sci Rep; 2015 Feb 05; 5():8253. PubMed ID: 25652843
    [Abstract] [Full Text] [Related]

  • 8. Microbial fuel cell operation using monoazo and diazo dyes as terminal electron acceptor for simultaneous decolourisation and bioelectricity generation.
    Oon YS, Ong SA, Ho LN, Wong YS, Oon YL, Lehl HK, Thung WE, Nordin N.
    J Hazard Mater; 2017 Mar 05; 325():170-177. PubMed ID: 27931001
    [Abstract] [Full Text] [Related]

  • 9. Photocatalytically improved azo dye reduction in a microbial fuel cell with rutile-cathode.
    Ding H, Li Y, Lu A, Jin S, Quan C, Wang C, Wang X, Zeng C, Yan Y.
    Bioresour Technol; 2010 May 05; 101(10):3500-5. PubMed ID: 20093012
    [Abstract] [Full Text] [Related]

  • 10. Simultaneous degradation of refractory contaminants in both the anode and cathode chambers of the microbial fuel cell.
    Luo Y, Zhang R, Liu G, Li J, Qin B, Li M, Chen S.
    Bioresour Technol; 2011 Feb 05; 102(4):3827-32. PubMed ID: 21177097
    [Abstract] [Full Text] [Related]

  • 11. A mediated glucose/oxygen enzymatic fuel cell based on printed carbon inks containing aldose dehydrogenase and laccase as anode and cathode.
    Jenkins P, Tuurala S, Vaari A, Valkiainen M, Smolander M, Leech D.
    Enzyme Microb Technol; 2012 Mar 10; 50(3):181-7. PubMed ID: 22305173
    [Abstract] [Full Text] [Related]

  • 12. Decolourization and detoxification of monoazo dyes by laccase from the white-rot fungus Trametes versicolor.
    Legerská B, Chmelová D, Ondrejovič M.
    J Biotechnol; 2018 Nov 10; 285():84-90. PubMed ID: 30171927
    [Abstract] [Full Text] [Related]

  • 13. Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells.
    Xia X, Tokash JC, Zhang F, Liang P, Huang X, Logan BE.
    Environ Sci Technol; 2013 Feb 19; 47(4):2085-91. PubMed ID: 23360098
    [Abstract] [Full Text] [Related]

  • 14. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells.
    Ahn Y, Logan BE.
    Bioresour Technol; 2013 Mar 19; 132():436-9. PubMed ID: 23433978
    [Abstract] [Full Text] [Related]

  • 15. Decolourisation Capabilities of Ligninolytic Enzymes Produced by Marasmius cladophyllus UMAS MS8 on Remazol Brilliant Blue R and Other Azo Dyes.
    Sing NN, Husaini A, Zulkharnain A, Roslan HA.
    Biomed Res Int; 2017 Mar 19; 2017():1325754. PubMed ID: 28168194
    [Abstract] [Full Text] [Related]

  • 16. Simultaneous acid red 27 decolourisation and bioelectricity generation in a (H-type) microbial fuel cell configuration using NAR-2.
    Kardi SN, Ibrahim N, Rashid NA, Darzi GN.
    Environ Sci Pollut Res Int; 2016 Feb 19; 23(4):3358-64. PubMed ID: 26490910
    [Abstract] [Full Text] [Related]

  • 17. High performance thylakoid bio-solar cell using laccase enzymatic biocathodes.
    Rasmussen M, Shrier A, Minteer SD.
    Phys Chem Chem Phys; 2013 Jun 21; 15(23):9062-5. PubMed ID: 23666112
    [Abstract] [Full Text] [Related]

  • 18. A highly efficient single chambered up-flow membrane-less microbial fuel cell for treatment of azo dye Acid Orange 7-containing wastewater.
    Thung WE, Ong SA, Ho LN, Wong YS, Ridwan F, Oon YL, Oon YS, Lehl HK.
    Bioresour Technol; 2015 Dec 21; 197():284-8. PubMed ID: 26342340
    [Abstract] [Full Text] [Related]

  • 19. Decolorization of an azo dye Orange G in microbial fuel cells using Fe(II)-EDTA catalyzed persulfate.
    Niu CG, Wang Y, Zhang XG, Zeng GM, Huang DW, Ruan M, Li XW.
    Bioresour Technol; 2012 Dec 21; 126():101-6. PubMed ID: 23073095
    [Abstract] [Full Text] [Related]

  • 20. A hybrid biocathode: surface display of O2-reducing enzymes for microbial fuel cell applications.
    Szczupak A, Kol-Kalman D, Alfonta L.
    Chem Commun (Camb); 2012 Jan 04; 48(1):49-51. PubMed ID: 22075939
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.