These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


374 related items for PubMed ID: 27871382

  • 1. Relevance of substrates and products on the desorption of lipases physically adsorbed on hydrophobic supports.
    Virgen-Ortíz JJ, Tacias-Pascacio VG, Hirata DB, Torrestiana-Sanchez B, Rosales-Quintero A, Fernandez-Lafuente R.
    Enzyme Microb Technol; 2017 Jan; 96():30-35. PubMed ID: 27871382
    [Abstract] [Full Text] [Related]

  • 2. Immobilization on octyl-agarose beads and some catalytic features of commercial preparations of lipase a from Candida antarctica (Novocor ADL): Comparison with immobilized lipase B from Candida antarctica.
    Arana-Peña S, Lokha Y, Fernández-Lafuente R.
    Biotechnol Prog; 2019 Jan; 35(1):e2735. PubMed ID: 30341806
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Stabilization of Candida antarctica Lipase B (CALB) Immobilized on Octyl Agarose by Treatment with Polyethyleneimine (PEI).
    Peirce S, Tacias-Pascacio VG, Russo ME, Marzocchella A, Virgen-Ortíz JJ, Fernandez-Lafuente R.
    Molecules; 2016 Jun 08; 21(6):. PubMed ID: 27338317
    [Abstract] [Full Text] [Related]

  • 5. Modulation of the regioselectivity of Thermomyces lanuginosus lipase via biocatalyst engineering for the Ethanolysis of oil in fully anhydrous medium.
    Abreu Silveira E, Moreno-Perez S, Basso A, Serban S, Pestana Mamede R, Tardioli PW, Sanchez Farinas C, Rocha-Martin J, Fernandez-Lorente G, Guisan JM.
    BMC Biotechnol; 2017 Dec 16; 17(1):88. PubMed ID: 29246143
    [Abstract] [Full Text] [Related]

  • 6. Effect of protein load on stability of immobilized enzymes.
    Fernandez-Lopez L, Pedrero SG, Lopez-Carrobles N, Gorines BC, Virgen-Ortíz JJ, Fernandez-Lafuente R.
    Enzyme Microb Technol; 2017 Mar 16; 98():18-25. PubMed ID: 28110660
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. A New Approach in Lipase-Octyl-Agarose Biocatalysis of 2-Arylpropionic Acid Derivatives.
    Siódmiak J, Dulęba J, Kocot N, Mastalerz R, Haraldsson GG, Marszałł MP, Siódmiak T.
    Int J Mol Sci; 2024 May 07; 25(10):. PubMed ID: 38791124
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Selection of CalB immobilization method to be used in continuous oil transesterification: analysis of the economical impact.
    Séverac E, Galy O, Turon F, Pantel CA, Condoret JS, Monsan P, Marty A.
    Enzyme Microb Technol; 2011 Jan 05; 48(1):61-70. PubMed ID: 22112772
    [Abstract] [Full Text] [Related]

  • 15. Use of polyethylenimine to produce immobilized lipase multilayers biocatalysts with very high volumetric activity using octyl-agarose beads: Avoiding enzyme release during multilayer production.
    Arana-Peña S, Rios NS, Mendez-Sanchez C, Lokha Y, Gonçalves LRB, Fernández-Lafuente R.
    Enzyme Microb Technol; 2020 Jun 05; 137():109535. PubMed ID: 32423679
    [Abstract] [Full Text] [Related]

  • 16. Biocatalyst engineering of Thermomyces Lanuginosus lipase adsorbed on hydrophobic supports: Modulation of enzyme properties for ethanolysis of oil in solvent-free systems.
    Abreu Silveira E, Moreno-Perez S, Basso A, Serban S, Pestana-Mamede R, Tardioli PW, Farinas CS, Castejon N, Fernandez-Lorente G, Rocha-Martin J, Guisan JM.
    J Biotechnol; 2019 Jan 10; 289():126-134. PubMed ID: 30465792
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Solid-phase handling of hydrophobins: immobilized hydrophobins as a new tool to study lipases.
    Palomo JM, Peñas MM, Fernández-Lorente G, Mateo C, Pisabarro AG, Fernández-Lafuente R, Ramírez L, Guisán JM.
    Biomacromolecules; 2003 Jan 10; 4(2):204-10. PubMed ID: 12625713
    [Abstract] [Full Text] [Related]

  • 19. Magnetic Cross-Linked Enzyme Aggregates (mCLEAs) of Candida antarctica lipase: an efficient and stable biocatalyst for biodiesel synthesis.
    Cruz-Izquierdo Á, Picó EA, López C, Serra JL, Llama MJ.
    PLoS One; 2014 Jan 10; 9(12):e115202. PubMed ID: 25551445
    [Abstract] [Full Text] [Related]

  • 20. Immobilization of lipases in hydrophobic chitosan for selective hydrolysis of fish oil: The impact of support functionalization on lipase activity, selectivity and stability.
    Urrutia P, Arrieta R, Alvarez L, Cardenas C, Mesa M, Wilson L.
    Int J Biol Macromol; 2018 Mar 10; 108():674-686. PubMed ID: 29246872
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.