These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


196 related items for PubMed ID: 27886345

  • 21. Predicting progeny performance in common bean (Phaseolus vulgaris L.) using molecular marker-based cluster analysis.
    Beattie AD, Michaels TE, Pauls KP.
    Genome; 2003 Apr; 46(2):259-67. PubMed ID: 12723042
    [Abstract] [Full Text] [Related]

  • 22. Multi-trait index: selection and recommendation of superior black bean genotypes as new improved varieties.
    Ambrósio M, Daher RF, Santos RM, Santana JGS, Vidal AKF, Nascimento MR, Leite CL, de Souza AG, Freitas RS, Stida WF, Farias JEC, de Souza Filho BF, Melo LC, Dos Santos PR.
    BMC Plant Biol; 2024 Jun 10; 24(1):525. PubMed ID: 38858659
    [Abstract] [Full Text] [Related]

  • 23. Geometry applied to breeding common beans (Phaseolus vulgaris).
    Lima JG, Ramalho MA.
    Genet Mol Res; 2016 Apr 26; 15(2):. PubMed ID: 27173247
    [Abstract] [Full Text] [Related]

  • 24. Genetic potential of common bean progenies selected for crude fiber content obtained through different breeding methods.
    Júnior VA, Melo PG, Pereira HS, Bassinello PZ, Melo LC.
    Genet Mol Res; 2015 May 29; 14(2):5763-74. PubMed ID: 26125775
    [Abstract] [Full Text] [Related]

  • 25. Mapping quantitative trait loci for a common bean (Phaseolus vulgaris L.) ideotype.
    Beattie AD, Larsen J, Michaels TE, Pauls KP.
    Genome; 2003 Jun 29; 46(3):411-22. PubMed ID: 12834057
    [Abstract] [Full Text] [Related]

  • 26. Simultaneous selection in beans for stability and high agronomic performance.
    Ribeiro ND, Casagrande CR, Mezzomo HC, Possobom MT, Steckling SM, Kläsener GR.
    Genet Mol Res; 2016 Nov 21; 15(4):. PubMed ID: 27886346
    [Abstract] [Full Text] [Related]

  • 27. Index selection on seed traits under direct, cytoplasmic and maternal effects in multiple environments.
    Zhang W, Xu H, Zhu J.
    J Genet Genomics; 2009 Jan 21; 36(1):41-9. PubMed ID: 19161944
    [Abstract] [Full Text] [Related]

  • 28. Estimate of genetic gain in popcorn after cycles of phenotypic recurrent selection.
    Ematné HJ, Nunes JA, Dias KO, Prado PE, Souza JC.
    Genet Mol Res; 2016 May 20; 15(2):. PubMed ID: 27323058
    [Abstract] [Full Text] [Related]

  • 29. Genetic improvement of plant architecture in the common bean.
    Silva VM, Menezes Júnior JA, Carneiro PC, Carneiro JE, Cruz CD.
    Genet Mol Res; 2013 Jan 30; 12(3):3093-102. PubMed ID: 23408452
    [Abstract] [Full Text] [Related]

  • 30. Dissecting the genetic control of seed coat color in a RIL population of common bean (Phaseolus vulgaris L.).
    García-Fernández C, Campa A, Ferreira JJ.
    Theor Appl Genet; 2021 Nov 30; 134(11):3687-3698. PubMed ID: 34328529
    [Abstract] [Full Text] [Related]

  • 31. Selection of common bean (Phaseolus vulgaris L.) genotypes using a genotype plus genotype x environment interaction biplot.
    Corrêa AM, Teodoro PE, Gonçalves MC, Santos A, Torres FE.
    Genet Mol Res; 2016 Aug 05; 15(3):. PubMed ID: 27525915
    [Abstract] [Full Text] [Related]

  • 32. Slow darkening of pinto bean seed coat is associated with significant metabolite and transcript differences related to proanthocyanidin biosynthesis.
    Duwadi K, Austin RS, Mainali HR, Bett K, Marsolais F, Dhaubhadel S.
    BMC Genomics; 2018 Apr 16; 19(1):260. PubMed ID: 29661146
    [Abstract] [Full Text] [Related]

  • 33. Assessment on induced genetic variability and divergence in the mutagenized lentil populations of microsperma and macrosperma cultivars developed using physical and chemical mutagenesis.
    Laskar RA, Khan S.
    PLoS One; 2017 Apr 16; 12(9):e0184598. PubMed ID: 28922405
    [Abstract] [Full Text] [Related]

  • 34. Relative changes in genetic variability and correlations in an early-maturing maize population during recurrent selection.
    Badu-Apraku B, Akinwale RO, Fakorede MA, Oyekunle M, Franco J.
    Theor Appl Genet; 2012 Oct 16; 125(6):1289-301. PubMed ID: 22722392
    [Abstract] [Full Text] [Related]

  • 35. Genotypic gain with simultaneous selection of production, nutrition, and culinary traits in cowpea crosses and backcrosses using mixed models.
    Oliveira DG, Rocha MM, Damasceno-Silva KJ, Sá FV, Lima LRL, Resende MDV.
    Genet Mol Res; 2017 Aug 17; 16(3):. PubMed ID: 28829904
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Predicted accuracy of and response to genomic selection for new traits in dairy cattle.
    Calus MP, de Haas Y, Pszczola M, Veerkamp RF.
    Animal; 2013 Feb 17; 7(2):183-91. PubMed ID: 23031684
    [Abstract] [Full Text] [Related]

  • 38. Uncovering Phenotypic Diversity and DArTseq Marker Loci Associated with Antioxidant Activity in Common Bean.
    Nadeem MA, Gündoğdu M, Ercişli S, Karaköy T, Saracoğlu O, Habyarimana E, Lin X, Hatipoğlu R, Nawaz MA, Sameeullah M, Ahmad F, Jung BM, Chung G, Baloch FS.
    Genes (Basel); 2019 Dec 28; 11(1):. PubMed ID: 31905657
    [Abstract] [Full Text] [Related]

  • 39. Genetic parameters and selection of soybean lines based on selection indexes.
    Teixeira FG, Hamawaki OT, Nogueira APO, Hamawaki RL, Jorge GL, Hamawaki CL, Machado BQV, Santana AJO.
    Genet Mol Res; 2017 Sep 21; 16(3):. PubMed ID: 28973733
    [Abstract] [Full Text] [Related]

  • 40. Evaluation of progenies from the fifth reciprocal recurrent selection cycle in maize.
    Alves NB, Pádua JM, Dias KO, Diniz RP, Guedes ML, Cardoso GA, Souza JC.
    Genet Mol Res; 2015 Jul 27; 14(3):8236-43. PubMed ID: 26345749
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.