These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


74 related items for PubMed ID: 27886596

  • 21. Target-Activated DNA Polymerase Activity for Sensitive RNase H Activity Assay.
    Jung Y, Lee CY, Park KS, Park HG.
    Biotechnol J; 2019 Jul; 14(7):e1800645. PubMed ID: 30791223
    [Abstract] [Full Text] [Related]

  • 22. Lysine directed cross-linking of viral DNA-RNA:DNA hybrid substrate to the isolated RNase H domain of HIV-1 reverse transcriptase.
    Guaitiao JP, Zúñiga RA, Roth MJ, Leon O.
    Biochemistry; 2004 Feb 10; 43(5):1302-8. PubMed ID: 14756566
    [Abstract] [Full Text] [Related]

  • 23. Dissecting the effects of DNA polymerase and ribonuclease H inhibitor combinations on HIV-1 reverse-transcriptase activities.
    Shaw-Reid CA, Feuston B, Munshi V, Getty K, Krueger J, Hazuda DJ, Parniak MA, Miller MD, Lewis D.
    Biochemistry; 2005 Feb 08; 44(5):1595-606. PubMed ID: 15683243
    [Abstract] [Full Text] [Related]

  • 24. Chemically modified oligonucleotides with efficient RNase H response.
    Vester B, Boel AM, Lobedanz S, Babu BR, Raunkjaer M, Lindegaard D, Raunak, Hrdlicka PJ, Højland T, Sharma PK, Kumar S, Nielsen P, Wengel J.
    Bioorg Med Chem Lett; 2008 Apr 01; 18(7):2296-300. PubMed ID: 18356048
    [Abstract] [Full Text] [Related]

  • 25. A radar-like DNA monitor for RNase H-targeted natural compounds screening and RNase H activity in situ detection.
    Hu Y, Xie Q, Chang L, Tao X, Tong C, Liu B, Wang W.
    Analyst; 2021 Sep 27; 146(19):5980-5987. PubMed ID: 34499070
    [Abstract] [Full Text] [Related]

  • 26. An allosteric switch-based hairpin for label-free chemiluminescence detection of ribonuclease H activity and inhibitors.
    Zhou Y, Zhang J, Jiang Q, Lu J.
    Analyst; 2019 Feb 11; 144(4):1420-1425. PubMed ID: 30607414
    [Abstract] [Full Text] [Related]

  • 27. A label-free amplified fluorescence DNA detection based on isothermal circular strand-displacement polymerization reaction and graphene oxide.
    Li Z, Zhu W, Zhang J, Jiang J, Shen G, Yu R.
    Analyst; 2013 Jul 07; 138(13):3616-20. PubMed ID: 23671905
    [Abstract] [Full Text] [Related]

  • 28. A hybrid chimeric system for versatile and ultra-sensitive RNase detection.
    Persano S, Vecchio G, Pompa PP.
    Sci Rep; 2015 Apr 01; 5():9558. PubMed ID: 25828752
    [Abstract] [Full Text] [Related]

  • 29. A quadruplex-based, label-free, and real-time fluorescence assay for RNase H activity and inhibition.
    Hu D, Pu F, Huang Z, Ren J, Qu X.
    Chemistry; 2010 Feb 22; 16(8):2605-10. PubMed ID: 20077530
    [Abstract] [Full Text] [Related]

  • 30. Interaction of peptides with graphene oxide and its application for real-time monitoring of protease activity.
    Zhang M, Yin BC, Wang XF, Ye BC.
    Chem Commun (Camb); 2011 Feb 28; 47(8):2399-401. PubMed ID: 21305066
    [Abstract] [Full Text] [Related]

  • 31. Substrate-dependent inhibition or stimulation of HIV RNase H activity by non-nucleoside reverse transcriptase inhibitors (NNRTIs).
    Hang JQ, Li Y, Yang Y, Cammack N, Mirzadegan T, Klumpp K.
    Biochem Biophys Res Commun; 2007 Jan 12; 352(2):341-50. PubMed ID: 17113568
    [Abstract] [Full Text] [Related]

  • 32. Selective inhibition of HIV-1 reverse transcriptase (HIV-1 RT) RNase H by small RNA hairpins and dumbbells.
    Hannoush RN, Carriero S, Min KL, Damha MJ.
    Chembiochem; 2004 Apr 02; 5(4):527-33. PubMed ID: 15185377
    [Abstract] [Full Text] [Related]

  • 33. Structure of human RNase H1 complexed with an RNA/DNA hybrid: insight into HIV reverse transcription.
    Nowotny M, Gaidamakov SA, Ghirlando R, Cerritelli SM, Crouch RJ, Yang W.
    Mol Cell; 2007 Oct 26; 28(2):264-76. PubMed ID: 17964265
    [Abstract] [Full Text] [Related]

  • 34. A graphene-based biosensing platform based on the release of DNA probes and rolling circle amplification.
    Liu M, Song J, Shuang S, Dong C, Brennan JD, Li Y.
    ACS Nano; 2014 Jun 24; 8(6):5564-73. PubMed ID: 24857187
    [Abstract] [Full Text] [Related]

  • 35. Graphene oxide-protected DNA probes for multiplex microRNA analysis in complex biological samples based on a cyclic enzymatic amplification method.
    Cui L, Lin X, Lin N, Song Y, Zhu Z, Chen X, Yang CJ.
    Chem Commun (Camb); 2012 Jan 07; 48(2):194-6. PubMed ID: 21971052
    [Abstract] [Full Text] [Related]

  • 36. Inhibition of the ribonuclease H and DNA polymerase activities of HIV-1 reverse transcriptase by N-(4-tert-butylbenzoyl)-2-hydroxy-1-naphthaldehyde hydrazone.
    Borkow G, Fletcher RS, Barnard J, Arion D, Motakis D, Dmitrienko GI, Parniak MA.
    Biochemistry; 1997 Mar 18; 36(11):3179-85. PubMed ID: 9115994
    [Abstract] [Full Text] [Related]

  • 37. Cleavage of double-stranded RNA by RNase HI from a thermoacidophilic archaeon, Sulfolobus tokodaii 7.
    Ohtani N, Yanagawa H, Tomita M, Itaya M.
    Nucleic Acids Res; 2004 Mar 18; 32(19):5809-19. PubMed ID: 15520465
    [Abstract] [Full Text] [Related]

  • 38. PNA-assembled graphene oxide for sensitive and selective detection of DNA.
    Guo S, Du D, Tang L, Ning Y, Yao Q, Zhang GJ.
    Analyst; 2013 Jun 07; 138(11):3216-20. PubMed ID: 23598429
    [Abstract] [Full Text] [Related]

  • 39. Similarities and differences in the RNase H activities of human immunodeficiency virus type 1 reverse transcriptase and Moloney murine leukemia virus reverse transcriptase.
    Gao HQ, Sarafianos SG, Arnold E, Hughes SH.
    J Mol Biol; 1999 Dec 17; 294(5):1097-113. PubMed ID: 10600369
    [Abstract] [Full Text] [Related]

  • 40. A graphene oxide platform for the assay of biomolecules based on chemiluminescence resonance energy transfer.
    Bi S, Zhao T, Luo B.
    Chem Commun (Camb); 2012 Jan 04; 48(1):106-8. PubMed ID: 22037540
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 4.