These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
208 related items for PubMed ID: 27888729
1. Fractionation of rapeseed straw by hydrothermal/dilute acid pretreatment combined with alkali post-treatment for improving its enzymatic hydrolysis. Chen BY, Zhao BC, Li MF, Liu QY, Sun RC. Bioresour Technol; 2017 Feb; 225():127-133. PubMed ID: 27888729 [Abstract] [Full Text] [Related]
2. Characterization of lignins isolated with alkali from the hydrothermal or dilute-acid pretreated rapeseed straw during bioethanol production. Chen BY, Zhao BC, Li MF, Sun RC. Int J Biol Macromol; 2018 Jan; 106():885-892. PubMed ID: 28830775 [Abstract] [Full Text] [Related]
3. Rapeseed-straw enzymatic digestibility enhancement by sodium hydroxide treatment under ultrasound irradiation. Kang KE, Jeong GT, Park DH. Bioprocess Biosyst Eng; 2013 Aug; 36(8):1019-29. PubMed ID: 23124436 [Abstract] [Full Text] [Related]
4. Effect of dilute alkali on structural features and enzymatic hydrolysis of barley straw (Hordeum vulgare) at boiling temperature with low residence time. Haque MA, Nath Barman D, Kang TH, Kim MK, Kim J, Kim H, Yun HD. J Microbiol Biotechnol; 2012 Dec; 22(12):1681-91. PubMed ID: 23221531 [Abstract] [Full Text] [Related]
5. Study of chemical pretreatment and enzymatic saccharification for producing fermentable sugars from rice straw. Chen WH, Chen YC, Lin JG. Bioprocess Biosyst Eng; 2014 Jul; 37(7):1337-44. PubMed ID: 24346765 [Abstract] [Full Text] [Related]
6. Evaluation of Mucor indicus and Saccharomyces cerevisiae capability to ferment hydrolysates of rape straw and Miscanthus giganteus as affected by the pretreatment method. Lewandowska M, Szymańska K, Kordala N, Dąbrowska A, Bednarski W, Juszczuk A. Bioresour Technol; 2016 Jul; 212():262-270. PubMed ID: 27107482 [Abstract] [Full Text] [Related]
7. Pretreatment of rapeseed straw by sodium hydroxide. Kang KE, Jeong GT, Park DH. Bioprocess Biosyst Eng; 2012 Jun; 35(5):705-13. PubMed ID: 22086290 [Abstract] [Full Text] [Related]
8. Enhanced biomass delignification and enzymatic saccharification of canola straw by steam-explosion pretreatment. Garmakhany AD, Kashaninejad M, Aalami M, Maghsoudlou Y, Khomieri M, Tabil LG. J Sci Food Agric; 2014 Jun; 94(8):1607-13. PubMed ID: 24186725 [Abstract] [Full Text] [Related]
9. Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes. Teeravivattanakit T, Baramee S, Phitsuwan P, Sornyotha S, Waeonukul R, Pason P, Tachaapaikoon C, Poomputsa K, Kosugi A, Sakka K, Ratanakhanokchai K. Appl Environ Microbiol; 2017 Nov 15; 83(22):. PubMed ID: 28864653 [Abstract] [Full Text] [Related]
10. Comparison of sodium carbonate-oxygen and sodium hydroxide-oxygen pretreatments on the chemical composition and enzymatic saccharification of wheat straw. Geng W, Huang T, Jin Y, Song J, Chang HM, Jameel H. Bioresour Technol; 2014 Jun 15; 161():63-8. PubMed ID: 24686372 [Abstract] [Full Text] [Related]
11. The impact of alkali pretreatment and post-pretreatment conditioning on the surface properties of rice straw affecting cellulose accessibility to cellulases. Karuna N, Zhang L, Walton JH, Couturier M, Oztop MH, Master ER, McCarthy MJ, Jeoh T. Bioresour Technol; 2014 Sep 15; 167():232-40. PubMed ID: 24983695 [Abstract] [Full Text] [Related]
12. Electricity generation from rapeseed straw hydrolysates using microbial fuel cells. Jablonska MA, Rybarczyk MK, Lieder M. Bioresour Technol; 2016 May 15; 208():117-122. PubMed ID: 26930033 [Abstract] [Full Text] [Related]
13. Rapeseed straw as a renewable source of hemicelluloses: Extraction, characterization and film formation. Svärd A, Brännvall E, Edlund U. Carbohydr Polym; 2015 Nov 20; 133():179-86. PubMed ID: 26344270 [Abstract] [Full Text] [Related]
14. Effect of pretreatment and enzymatic hydrolysis on the physical-chemical composition and morphologic structure of sugarcane bagasse and sugarcane straw. Moretti MMS, Perrone OM, Nunes CDCC, Taboga S, Boscolo M, da Silva R, Gomes E. Bioresour Technol; 2016 Nov 20; 219():773-777. PubMed ID: 27578061 [Abstract] [Full Text] [Related]
15. Comparison of two-stage acid-alkali and alkali-acid pretreatments on enzymatic saccharification ability of the sweet sorghum fiber and their physicochemical characterizations. Li P, Cai D, Zhang C, Li S, Qin P, Chen C, Wang Y, Wang Z. Bioresour Technol; 2016 Dec 20; 221():636-644. PubMed ID: 27693729 [Abstract] [Full Text] [Related]
16. Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. McIntosh S, Vancov T. Bioresour Technol; 2010 Sep 20; 101(17):6718-27. PubMed ID: 20403691 [Abstract] [Full Text] [Related]
17. Dilute acid pretreatment of rapeseed straw for fermentable sugar generation. Castro E, Díaz MJ, Cara C, Ruiz E, Romero I, Moya M. Bioresour Technol; 2011 Jan 20; 102(2):1270-6. PubMed ID: 20826085 [Abstract] [Full Text] [Related]
18. The comparison of obtaining fermentable sugars from cellulose by enzymatic hydrolysis and fast pyrolysis. Jiang L, Zheng A, Zhao Z, He F, Li H, Wu N. Bioresour Technol; 2016 Jan 20; 200():8-13. PubMed ID: 26476158 [Abstract] [Full Text] [Related]
19. Rice straw pretreatment using deep eutectic solvents with different constituents molar ratios: Biomass fractionation, polysaccharides enzymatic digestion and solvent reuse. Li AL, Hou XD, Lin KP, Zhang X, Fu MH. J Biosci Bioeng; 2018 Sep 20; 126(3):346-354. PubMed ID: 29657125 [Abstract] [Full Text] [Related]
20. High selective delignification using oxidative ionic liquid pretreatment at mild conditions for efficient enzymatic hydrolysis of lignocellulose. Pang Z, Lyu W, Dong C, Li H, Yang G. Bioresour Technol; 2016 Aug 20; 214():96-101. PubMed ID: 27128194 [Abstract] [Full Text] [Related] Page: [Next] [New Search]