These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
191 related items for PubMed ID: 27901314
1. Effects of Hypoxia and Hypercapnic Hypoxia on Oxygen Transport and Acid-Base Status in the Atlantic Blue Crab, Callinectes sapidus, During Exercise. Lehtonen MP, Burnett LE. J Exp Zool A Ecol Genet Physiol; 2016 Nov; 325(9):598-609. PubMed ID: 27901314 [Abstract] [Full Text] [Related]
2. Clearance of Vibrio campbellii injected into the hemolymph of Callinectes sapidus, the Atlantic blue crab: the effects of prior exposure to bacteria and environmental hypoxia. Macey BM, Rathburn CK, Thibodeaux LK, Burnett LE, Burnett KG. Fish Shellfish Immunol; 2008 Dec; 25(6):718-30. PubMed ID: 18964085 [Abstract] [Full Text] [Related]
3. Locomotory fatigue during moderate and severe hypoxia and hypercapnia in the Atlantic blue crab, Callinectes sapidus. Stover KK, Burnett KG, McElroy EJ, Burnett LE. Biol Bull; 2013 Apr; 224(2):68-78. PubMed ID: 23677972 [Abstract] [Full Text] [Related]
4. Effects of hypercapnic hypoxia on the clearance of Vibrio campbellii in the Atlantic blue crab, Callinectes sapidus Rathbun. Holman JD, Burnett KG, Burnett LE. Biol Bull; 2004 Jun; 206(3):188-96. PubMed ID: 15198944 [Abstract] [Full Text] [Related]
5. The effects of hypoxia and pH on phenoloxidase activity in the Atlantic blue crab, Callinectes sapidus. Tanner CA, Burnett LE, Burnett KG. Comp Biochem Physiol A Mol Integr Physiol; 2006 Jun; 144(2):218-23. PubMed ID: 16616537 [Abstract] [Full Text] [Related]
6. Acid-base regulation during exercise and recovery in the blue crab, Callinectes sapidus. Booth CE, McMahon BR, De Fur PL, Wilkes PR. Respir Physiol; 1984 Dec; 58(3):359-76. PubMed ID: 6528111 [Abstract] [Full Text] [Related]
7. Hemolymph oxygen transport during environmental hypoxia in the shore crab, Carcinus maenas. Lallier F, Truchot JP. Respir Physiol; 1989 Sep; 77(3):323-36. PubMed ID: 2781169 [Abstract] [Full Text] [Related]
8. Respiratory, acid-base, and metabolic responses of the Christmas Island blue crab, Cardisoma hirtipes (Dana), during simulated environmental conditions. Dela-Cruz J, Morris S. Physiol Zool; 1997 Sep; 70(1):100-15. PubMed ID: 9231382 [Abstract] [Full Text] [Related]
9. The effect of varying arterial oxygen tension on neonatal acid-base balance. Torrance SM, Wittnich C. Pediatr Res; 1992 Feb; 31(2):112-6. PubMed ID: 1542537 [Abstract] [Full Text] [Related]
10. Combined effects of inspired oxygen, carbon dioxide, and carbon monoxide on oxygen transport and aerobic capacity. Crocker GH, Toth B, Jones JH. J Appl Physiol (1985); 2013 Sep 01; 115(5):643-52. PubMed ID: 23813529 [Abstract] [Full Text] [Related]
11. Energy metabolism and metabolic depression during exercise in Callinectes sapidus, the Atlantic blue crab: effects of the bacterial pathogen Vibrio campbellii. Thibodeaux LK, Burnett KG, Burnett LE. J Exp Biol; 2009 Nov 01; 212(Pt 21):3428-39. PubMed ID: 19837884 [Abstract] [Full Text] [Related]
12. Immune defense reduces respiratory fitness in Callinectes sapidus, the Atlantic blue crab. Burnett LE, Holman JD, Jorgensen DD, Ikerd JL, Burnett KG. Biol Bull; 2006 Aug 01; 211(1):50-7. PubMed ID: 16946241 [Abstract] [Full Text] [Related]
13. Respiratory Responses of the Blue Crab Callinectes sapidus to Long-Term Hypoxia. DeFur PL, Mangum CP, Reese JE. Biol Bull; 1990 Feb 01; 178(1):46-54. PubMed ID: 29314976 [Abstract] [Full Text] [Related]
14. Comparison of the influence of dihydroergotoxine on cerebral oxygenation in the normoxic and hypercapnic hypoxic dog. Van den Driessche J, Allain H, Bentué-Ferrer D, Feuillu A, Pape D, Milon D, Reymann JM. J Pharmacol; 1985 Feb 01; 16 Suppl 3():85-99. PubMed ID: 4094451 [Abstract] [Full Text] [Related]
15. Dynamics of acid-base and hematological regulation in day 15 chicken embryos (Gallus gallus domesticus) exposed to graded hypercapnia and hypoxia. Mueller CA, Tazawa H, Burggren WW. Respir Physiol Neurobiol; 2017 May 01; 239():55-63. PubMed ID: 28189709 [Abstract] [Full Text] [Related]
16. Oxygen and carbon dioxide sensitivity of ventilation in amphibious crabs, Cardisoma guanhumi, breathing air and water. Gannon AT, Henry RP. Comp Biochem Physiol A Mol Integr Physiol; 2004 May 01; 138(1):111-7. PubMed ID: 15165578 [Abstract] [Full Text] [Related]
17. Effects of hypoxia on gene and protein expression in the blue crab, Callinectes sapidus. Brouwer M, Larkin P, Brown-Peterson N, King C, Manning S, Denslow N. Mar Environ Res; 2004 May 01; 58(2-5):787-92. PubMed ID: 15178114 [Abstract] [Full Text] [Related]
18. The thermal tolerance of a tropical population of blue crab (Callinectes sapidus) modulates aerobic metabolism during hypoxia. García-Rueda A, Tremblay N, Mascaró M, Díaz F, Paschke K, Caamal-Monsreal C, Rosas C. J Therm Biol; 2021 Dec 01; 102():103078. PubMed ID: 34863472 [Abstract] [Full Text] [Related]
19. Specialized adaptations allow vent-endemic crabs (Xenograpsus testudinatus) to thrive under extreme environmental hypercapnia. Allen GJP, Kuan PL, Tseng YC, Hwang PP, Quijada-Rodriguez AR, Weihrauch D. Sci Rep; 2020 Jul 16; 10(1):11720. PubMed ID: 32678186 [Abstract] [Full Text] [Related]
20. Individual and combined effects of low dissolved oxygen and low pH on survival of early stage larval blue crabs, Callinectes sapidus. Tomasetti SJ, Morrell BK, Merlo LR, Gobler CJ. PLoS One; 2018 Jul 16; 13(12):e0208629. PubMed ID: 30532265 [Abstract] [Full Text] [Related] Page: [Next] [New Search]