These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


170 related items for PubMed ID: 27902845

  • 41. Expression of the gltP gene of Escherichia coli in a glutamate transport-deficient mutant of Rhodobacter sphaeroides restores chemotaxis to glutamate.
    Jacobs MH, van der Heide T, Tolner B, Driessen AJ, Konings WN.
    Mol Microbiol; 1995 Nov; 18(4):641-7. PubMed ID: 8817487
    [Abstract] [Full Text] [Related]

  • 42. Molecular cloning and expression of biotin sulfoxide reductase from Rhodobacter sphaeroides forma sp. denitrificans.
    Pollock VV, Barber MJ.
    Arch Biochem Biophys; 1995 Apr 20; 318(2):322-32. PubMed ID: 7733660
    [Abstract] [Full Text] [Related]

  • 43. The bacteriochlorophyll biosynthesis gene, bchM, of Rhodobacter sphaeroides encodes S-adenosyl-L-methionine: Mg protoporphyrin IX methyltransferase.
    Gibson LC, Hunter CN.
    FEBS Lett; 1994 Sep 26; 352(2):127-30. PubMed ID: 7925960
    [Abstract] [Full Text] [Related]

  • 44. A sensory transducer homologous to the mammalian peripheral-type benzodiazepine receptor regulates photosynthetic membrane complex formation in Rhodobacter sphaeroides 2.4.1.
    Yeliseev AA, Kaplan S.
    J Biol Chem; 1995 Sep 08; 270(36):21167-75. PubMed ID: 7673149
    [Abstract] [Full Text] [Related]

  • 45. Whole-genome sequence of purple non-sulfur bacteria, Rhodobacter sphaeroides strain MBTLJ-8 with improved CO2 reduction capacity.
    Park JY, Kim BN, Kim YH, Min J.
    J Biotechnol; 2018 Dec 20; 288():9-14. PubMed ID: 30359676
    [Abstract] [Full Text] [Related]

  • 46. Bacteriochlorophyll-dependent expression of genes for pigment-binding proteins in Rhodobacter capsulatus involves the RegB/RegA two-component system.
    Abada EM, Balzer A, Jäger A, Klug G.
    Mol Genet Genomics; 2002 Apr 20; 267(2):202-9. PubMed ID: 11976963
    [Abstract] [Full Text] [Related]

  • 47. Improvement of bacterial hydrogen production by ATP in mixed organic compounds extracted from Rhodobacter sphaeroides aerobically cultured under dark conditions.
    Lee HJ, Jang A, Park JM, Kim YH, Chung BW, Min J.
    Bioresour Technol; 2012 Nov 20; 123():678-81. PubMed ID: 22939604
    [Abstract] [Full Text] [Related]

  • 48. Chlorophyll a Synthesis in Rhodobacter sphaeroides by Chlorophyll Synthase of Nicotiana tabacum.
    Kim J, Lee JK, Kim EJ.
    Biology (Basel); 2023 Apr 10; 12(4):. PubMed ID: 37106772
    [Abstract] [Full Text] [Related]

  • 49. Biosynthesis of pinene in purple non-sulfur photosynthetic bacteria.
    Wu X, Ma G, Liu C, Qiu XY, Min L, Kuang J, Zhu L.
    Microb Cell Fact; 2021 May 17; 20(1):101. PubMed ID: 34001115
    [Abstract] [Full Text] [Related]

  • 50. Identification of two gene loci involved in poly-beta-hydroxybutyrate production in Rhodobacter sphaeroides FJ1.
    Yang MK, Lin YC, Shen CH.
    J Microbiol Immunol Infect; 2006 Feb 17; 39(1):18-27. PubMed ID: 16440119
    [Abstract] [Full Text] [Related]

  • 51. Tackling codon usage bias for heterologous expression in Rhodobacter sphaeroides by supplementation of rare tRNAs.
    Cheng D, Wang R, Prather KJ, Chow KL, Hsing IM.
    Enzyme Microb Technol; 2015 May 17; 72():25-34. PubMed ID: 25837504
    [Abstract] [Full Text] [Related]

  • 52. Construction, characterization, and complementation of a Puf- mutant of Rhodobacter sphaeroides.
    Davis J, Donohue TJ, Kaplan S.
    J Bacteriol; 1988 Jan 17; 170(1):320-9. PubMed ID: 3257209
    [Abstract] [Full Text] [Related]

  • 53. Involvement in denitrification of the napKEFDABC genes encoding the periplasmic nitrate reductase system in the denitrifying phototrophic bacterium Rhodobacter sphaeroides f. sp. denitrificans.
    Liu HP, Takio S, Satoh T, Yamamoto I.
    Biosci Biotechnol Biochem; 1999 Mar 17; 63(3):530-6. PubMed ID: 10227138
    [Abstract] [Full Text] [Related]

  • 54. Overproduction of mannitol dehydrogenase in Rhodobacter sphaeroides.
    Schneider KH, Giffhorn F.
    Appl Microbiol Biotechnol; 1994 Jul 17; 41(5):578-83. PubMed ID: 7765086
    [Abstract] [Full Text] [Related]

  • 55. The effect of aeration, agitation and light on biohydrogen production by Rhodobacter sphaeroides NCIMB 8253.
    Jaapar SZ, Kalil MS, Anuar N.
    Pak J Biol Sci; 2009 Sep 15; 12(18):1253-9. PubMed ID: 20384278
    [Abstract] [Full Text] [Related]

  • 56. Aerobic and anaerobic Mg-protoporphyrin monomethyl ester cyclases in purple bacteria: a strategy adopted to bypass the repressive oxygen control system.
    Ouchane S, Steunou AS, Picaud M, Astier C.
    J Biol Chem; 2004 Feb 20; 279(8):6385-94. PubMed ID: 14617630
    [Abstract] [Full Text] [Related]

  • 57. Network identification and flux quantification of glucose metabolism in Rhodobacter sphaeroides under photoheterotrophic H(2)-producing conditions.
    Tao Y, Liu D, Yan X, Zhou Z, Lee JK, Yang C.
    J Bacteriol; 2012 Jan 20; 194(2):274-83. PubMed ID: 22056932
    [Abstract] [Full Text] [Related]

  • 58. Construction and validation of the Rhodobacter sphaeroides 2.4.1 DNA microarray: transcriptome flexibility at diverse growth modes.
    Pappas CT, Sram J, Moskvin OV, Ivanov PS, Mackenzie RC, Choudhary M, Land ML, Larimer FW, Kaplan S, Gomelsky M.
    J Bacteriol; 2004 Jul 20; 186(14):4748-58. PubMed ID: 15231807
    [Abstract] [Full Text] [Related]

  • 59. Co-production of farnesol and coenzyme Q10 from metabolically engineered Rhodobacter sphaeroides.
    Chen X, Jiang X, Xu M, Zhang M, Huang R, Huang J, Qi F.
    Microb Cell Fact; 2019 May 31; 18(1):98. PubMed ID: 31151455
    [Abstract] [Full Text] [Related]

  • 60. The regulation of heme and chlorophyll synthesis in bacteria.
    Lascelles J.
    Ann N Y Acad Sci; 1975 Apr 15; 244():334-47. PubMed ID: 166593
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.