These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


285 related items for PubMed ID: 27905023

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. The Transcription Factors COUP-TFI and COUP-TFII have Distinct Roles in Arealisation and GABAergic Interneuron Specification in the Early Human Fetal Telencephalon.
    Alzu'bi A, Lindsay SJ, Harkin LF, McIntyre J, Lisgo SN, Clowry GJ.
    Cereb Cortex; 2017 Oct 01; 27(10):4971-4987. PubMed ID: 28922831
    [Abstract] [Full Text] [Related]

  • 3. Expression of ventral telencephalon transcription factors ASCL1 and DLX2 in the early fetal human cerebral cortex.
    Alzu'bi A, Clowry GJ.
    J Anat; 2019 Sep 01; 235(3):555-568. PubMed ID: 30861584
    [Abstract] [Full Text] [Related]

  • 4. Nuclear receptor COUP-TFII-expressing neocortical interneurons are derived from the medial and lateral/caudal ganglionic eminence and define specific subsets of mature interneurons.
    Cai Y, Zhang Q, Wang C, Zhang Y, Ma T, Zhou X, Tian M, Rubenstein JL, Yang Z.
    J Comp Neurol; 2013 Feb 01; 521(2):479-97. PubMed ID: 22791192
    [Abstract] [Full Text] [Related]

  • 5. COUP-TFII expressing interneurons in human fetal forebrain.
    Reinchisi G, Ijichi K, Glidden N, Jakovcevski I, Zecevic N.
    Cereb Cortex; 2012 Dec 01; 22(12):2820-30. PubMed ID: 22178710
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. COUP-TFII is preferentially expressed in the caudal ganglionic eminence and is involved in the caudal migratory stream.
    Kanatani S, Yozu M, Tabata H, Nakajima K.
    J Neurosci; 2008 Dec 10; 28(50):13582-91. PubMed ID: 19074032
    [Abstract] [Full Text] [Related]

  • 8. Expression of COUP-TFII nuclear receptor in restricted GABAergic neuronal populations in the adult rat hippocampus.
    Fuentealba P, Klausberger T, Karayannis T, Suen WY, Huck J, Tomioka R, Rockland K, Capogna M, Studer M, Morales M, Somogyi P.
    J Neurosci; 2010 Feb 03; 30(5):1595-609. PubMed ID: 20130170
    [Abstract] [Full Text] [Related]

  • 9. Molecular control of two novel migratory paths for CGE-derived interneurons in the developing mouse brain.
    Touzot A, Ruiz-Reig N, Vitalis T, Studer M.
    Development; 2016 May 15; 143(10):1753-65. PubMed ID: 27034423
    [Abstract] [Full Text] [Related]

  • 10. Developmental characterization of Zswim5 expression in the progenitor domains and tangential migration pathways of cortical interneurons in the mouse forebrain.
    Chang CC, Kuo HY, Chen SY, Lin WT, Lu KM, Saito T, Liu FC.
    J Comp Neurol; 2020 Oct 15; 528(14):2404-2419. PubMed ID: 32144752
    [Abstract] [Full Text] [Related]

  • 11. The COUP-TF nuclear receptors regulate cell migration in the mammalian basal forebrain.
    Tripodi M, Filosa A, Armentano M, Studer M.
    Development; 2004 Dec 15; 131(24):6119-29. PubMed ID: 15548577
    [Abstract] [Full Text] [Related]

  • 12. Loss of COUP-TFI alters the balance between caudal ganglionic eminence- and medial ganglionic eminence-derived cortical interneurons and results in resistance to epilepsy.
    Lodato S, Tomassy GS, De Leonibus E, Uzcategui YG, Andolfi G, Armentano M, Touzot A, Gaztelu JM, Arlotta P, Menendez de la Prida L, Studer M.
    J Neurosci; 2011 Mar 23; 31(12):4650-62. PubMed ID: 21430164
    [Abstract] [Full Text] [Related]

  • 13. Transcription factors COUP-TFI and COUP-TFII are required for the production of granule cells in the mouse olfactory bulb.
    Zhou X, Liu F, Tian M, Xu Z, Liang Q, Wang C, Li J, Liu Z, Tang K, He M, Yang Z.
    Development; 2015 May 01; 142(9):1593-605. PubMed ID: 25922524
    [Abstract] [Full Text] [Related]

  • 14. The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations.
    Nery S, Fishell G, Corbin JG.
    Nat Neurosci; 2002 Dec 01; 5(12):1279-87. PubMed ID: 12411960
    [Abstract] [Full Text] [Related]

  • 15. Origin and molecular specification of striatal interneurons.
    Marin O, Anderson SA, Rubenstein JL.
    J Neurosci; 2000 Aug 15; 20(16):6063-76. PubMed ID: 10934256
    [Abstract] [Full Text] [Related]

  • 16. Origins of cortical interneuron subtypes.
    Xu Q, Cobos I, De La Cruz E, Rubenstein JL, Anderson SA.
    J Neurosci; 2004 Mar 17; 24(11):2612-22. PubMed ID: 15028753
    [Abstract] [Full Text] [Related]

  • 17. The germinal zones of the basal ganglia but not the septum generate GABAergic interneurons for the cortex.
    Rubin AN, Alfonsi F, Humphreys MP, Choi CK, Rocha SF, Kessaris N.
    J Neurosci; 2010 Sep 08; 30(36):12050-62. PubMed ID: 20826668
    [Abstract] [Full Text] [Related]

  • 18. The early fetal development of human neocortical GABAergic interneurons.
    Al-Jaberi N, Lindsay S, Sarma S, Bayatti N, Clowry GJ.
    Cereb Cortex; 2015 Mar 08; 25(3):631-45. PubMed ID: 24047602
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Sonic hedgehog signaling confers ventral telencephalic progenitors with distinct cortical interneuron fates.
    Xu Q, Guo L, Moore H, Waclaw RR, Campbell K, Anderson SA.
    Neuron; 2010 Feb 11; 65(3):328-40. PubMed ID: 20159447
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.