These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Significance of non-esterified fatty acids in iron uptake by intestinal brush-border membrane vesicles. Simpson RJ, Moore R, Peters TJ. Biochim Biophys Acta; 1988 Jun 07; 941(1):39-47. PubMed ID: 3370211 [Abstract] [Full Text] [Related]
3. Dietary free fatty acids form alkaline phosphatase-enriched microdomains in the intestinal brush border membrane. Hansen GH, Rasmussen K, Niels-Christiansen LL, Danielsen EM. Mol Membr Biol; 2011 Feb 07; 28(2):136-44. PubMed ID: 21166483 [Abstract] [Full Text] [Related]
4. Dietary omega-3 fatty acids and cholesterol modify desaturase activities and fatty acyl constituents of rat intestinal brush border and microsomal membranes of diabetic rats. Keelan M, Thomson AB, Garg ML, Wierzbicki E, Wierzbicki AA, Clandinin MT. Diabetes Res; 1994 Feb 07; 26(2):47-66. PubMed ID: 7554726 [Abstract] [Full Text] [Related]
5. Modulation of monkey small intestinal brush border membrane D-glucose transport by nonesterified fatty acids. Ibrahim SA, Balasubramanian KA. Indian J Biochem Biophys; 1993 Jun 07; 30(3):172-6. PubMed ID: 8406548 [Abstract] [Full Text] [Related]
6. Comparison of changes in uptake and mucosal processing of iron in short and long-term iron depletion. Topham RW, Eads CE. Biochem Int; 1991 Mar 07; 23(4):759-68. PubMed ID: 1872886 [Abstract] [Full Text] [Related]
7. Feeding an isocaloric omega-3 fatty acid diet reduces the brush border membrane vesicle uptake of glucose in streptozotocin-diabetic rats. Love J, Mulvey G, Doring K, Keelan M, Clandinin MT, Thomson AB. Diabetes Res; 1994 Mar 07; 25(2):65-75. PubMed ID: 7648781 [Abstract] [Full Text] [Related]
8. Iron uptake by hepatopancreas brush border membrane vesicles (BBMV) of the lobster (Homarus americanus). Aslamkhan AG, Ahearn GA. J Exp Zool A Comp Exp Biol; 2003 Feb 01; 295(2):145-50. PubMed ID: 12541298 [Abstract] [Full Text] [Related]
9. Proteome of murine jejunal brush border membrane vesicles. Donowitz M, Singh S, Salahuddin FF, Hogema BM, Chen Y, Gucek M, Cole RN, Ham A, Zachos NC, Kovbasnjuk O, Lapierre LA, Broere N, Goldenring J, deJonge H, Li X. J Proteome Res; 2007 Oct 01; 6(10):4068-79. PubMed ID: 17845021 [Abstract] [Full Text] [Related]
10. Dietary fat selectively alters transport properties of rat jejunum. Thomson AB, Keelan M, Clandinin MT, Walker K. J Clin Invest; 1986 Jan 01; 77(1):279-88. PubMed ID: 3944255 [Abstract] [Full Text] [Related]
11. Studies on the role of iron binding ligands and the intestinal brush border receptors in iron absorption. Rao BS, Rao KS. Indian J Biochem Biophys; 1992 Apr 01; 29(2):214-8. PubMed ID: 1398716 [Abstract] [Full Text] [Related]
12. Fe2+ uptake by mouse intestinal mucosa in vivo and by isolated intestinal brush-border membrane vesicles. Simpson RJ, Raja KB, Peters TJ. Biochim Biophys Acta; 1986 Aug 21; 860(2):229-35. PubMed ID: 3741852 [Abstract] [Full Text] [Related]
13. Class B scavenger receptor-mediated intestinal absorption of dietary beta-carotene and cholesterol. van Bennekum A, Werder M, Thuahnai ST, Han CH, Duong P, Williams DL, Wettstein P, Schulthess G, Phillips MC, Hauser H. Biochemistry; 2005 Mar 22; 44(11):4517-25. PubMed ID: 15766282 [Abstract] [Full Text] [Related]
14. Comparison of changes in the uptake and mucosal processing of iron in riboflavin-deficient rats. Butler BF, Topham RW. Biochem Mol Biol Int; 1993 May 22; 30(1):53-61. PubMed ID: 8358336 [Abstract] [Full Text] [Related]
15. pH-sensitive transport of Fe2+ across purified brush-border membrane from mouse intestine. Simpson RJ, Peters TJ. Biochim Biophys Acta; 1986 Mar 27; 856(1):109-14. PubMed ID: 3955029 [Abstract] [Full Text] [Related]
16. Regional specificity of iron uptake by small intestinal brush-border membranes from normal and iron-deficient mice. Muir A, Hopfer U. Am J Physiol; 1985 Mar 27; 248(3 Pt 1):G376-9. PubMed ID: 3976894 [Abstract] [Full Text] [Related]
17. Vitamin D-mediated intestinal calcium transport. Effects of essential fatty acid deficiency and spin label studies of enterocyte membrane lipid fluidity. Putkey JA, Spielvogel AM, Sauerheber RD, Dunlap CS, Norman AW. Biochim Biophys Acta; 1982 May 21; 688(1):177-90. PubMed ID: 7093274 [Abstract] [Full Text] [Related]
18. Alterations in intestinal uptake and compartmentalization of zinc in response to short-term dexamethasone therapy or excess dietary zinc in piglets. Wang Z, Atkinson SA, Bertolo RF, Polberger S, Lonnerdal B. Pediatr Res; 1993 Feb 21; 33(2):118-24. PubMed ID: 8433886 [Abstract] [Full Text] [Related]
19. Alterations in the mucosal processing of iron in response to very-short-term dietary iron depletion and repletion. Topham RW, Eads CE, Butler BF. Biochem J; 1992 Jun 15; 284 ( Pt 3)(Pt 3):877-84. PubMed ID: 1622403 [Abstract] [Full Text] [Related]
20. Mouse intestinal Fe3+ uptake kinetics in vivo. The significance of brush-border membrane vesicle transport in the mechanism of mucosal Fe3+ uptake. Simpson RJ, Peters TJ. Biochim Biophys Acta; 1986 Mar 27; 856(1):115-22. PubMed ID: 3955030 [Abstract] [Full Text] [Related] Page: [Next] [New Search]