These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
317 related items for PubMed ID: 27913887
21. Effects of Two Starch Synthase IIa Isoforms on Grain Components and Other Grain Traits in Barley. Pan Z, Deng X, Li Q, Xie R, Zhai H, Zeng X, Luobu Z, Tashi N, Li Z. J Agric Food Chem; 2021 Feb 03; 69(4):1206-1213. PubMed ID: 33481586 [Abstract] [Full Text] [Related]
23. Transcriptome dynamics of a susceptible wheat upon Fusarium head blight reveals that molecular responses to Fusarium graminearum infection fit over the grain development processes. Chetouhi C, Bonhomme L, Lasserre-Zuber P, Cambon F, Pelletier S, Renou JP, Langin T. Funct Integr Genomics; 2016 Mar 03; 16(2):183-201. PubMed ID: 26797431 [Abstract] [Full Text] [Related]
27. High night temperature induced changes in grain starch metabolism alters starch, protein, and lipid accumulation in winter wheat. Impa SM, Vennapusa AR, Bheemanahalli R, Sabela D, Boyle D, Walia H, Jagadish SVK. Plant Cell Environ; 2020 Feb 03; 43(2):431-447. PubMed ID: 31702834 [Abstract] [Full Text] [Related]
28. Transcriptome analysis of grain-filling caryopses reveals the potential formation mechanism of the rice sugary mutant. Li FP, Yoon MY, Li G, Ra WH, Park JW, Kwon SJ, Kwon SW, Ahn IP, Park YJ. Gene; 2014 Aug 10; 546(2):318-26. PubMed ID: 24875416 [Abstract] [Full Text] [Related]
29. Stem lodging resistance in hulless barley: Transcriptome and metabolome analysis of lignin biosynthesis pathways in contrasting genotypes. Yu M, Wang M, Gyalpo T, Basang Y. Genomics; 2021 Jan 10; 113(1 Pt 2):935-943. PubMed ID: 33127582 [Abstract] [Full Text] [Related]
32. Over-expression of (1,3;1,4)-β-D-glucanase isoenzyme EII gene results in decreased (1,3;1,4)-β-D-glucan content and increased starch level in barley grains. Han N, Na C, Chai Y, Chen J, Zhang Z, Bai B, Bian H, Zhang Y, Zhu M. J Sci Food Agric; 2017 Jan 10; 97(1):122-127. PubMed ID: 26927391 [Abstract] [Full Text] [Related]
33. Genome-Wide Identification of Barley Long Noncoding RNAs and Analysis of Their Regulatory Interactions during Shoot and Grain Development. Gasparis S, Przyborowski M, Nadolska-Orczyk A. Int J Mol Sci; 2021 May 11; 22(10):. PubMed ID: 34064912 [Abstract] [Full Text] [Related]
37. Antisense-mediated suppression of C-hordein biosynthesis in the barley grain results in correlated changes in the transcriptome, protein profile, and amino acid composition. Hansen M, Lange M, Friis C, Dionisio G, Holm PB, Vincze E. J Exp Bot; 2007 May 11; 58(14):3987-95. PubMed ID: 18162630 [Abstract] [Full Text] [Related]
38. Combined effects of a glycine-rich RNA-binding protein and a NAC transcription factor extend grain fill duration and improve malt barley agronomic performance. Alptekin B, Mangel D, Pauli D, Blake T, Lachowiec J, Hoogland T, Fischer A, Sherman J. Theor Appl Genet; 2021 Jan 11; 134(1):351-366. PubMed ID: 33084930 [Abstract] [Full Text] [Related]
40. Comparative transcriptome analysis of major lodging resistant factors in hulless barley. Bai Y, Zhao X, Yao X, Yao Y, Li X, Hou L, An L, Wu K, Wang Z. Front Plant Sci; 2023 Jan 11; 14():1230792. PubMed ID: 37905169 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]