These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


225 related items for PubMed ID: 2791632

  • 1. Effect of opacification and pigmentation on human lens protein thiol/disulfide and solubility.
    Lou MF, Huang QL, Zigler JS.
    Curr Eye Res; 1989 Sep; 8(9):883-90. PubMed ID: 2791632
    [Abstract] [Full Text] [Related]

  • 2. The effect and recovery of long-term H2O2 exposure on lens morphology and biochemistry.
    Cui XL, Lou MF.
    Exp Eye Res; 1993 Aug; 57(2):157-67. PubMed ID: 8405182
    [Abstract] [Full Text] [Related]

  • 3. Does glutathione-S-transferase dethiolate lens protein-thiol mixed disulfides?-A comparative study with thioltransferase.
    Raghavachari N, Qiao F, Lou MF.
    Exp Eye Res; 1999 Jun; 68(6):715-24. PubMed ID: 10375435
    [Abstract] [Full Text] [Related]

  • 4. Accumulation of the hydroxyl free radical markers meta-, ortho-tyrosine and DOPA in cataractous lenses is accompanied by a lower protein and phenylalanine content of the water-soluble phase.
    Molnár GA, Nemes V, Biró Z, Ludány A, Wagner Z, Wittmann I.
    Free Radic Res; 2005 Dec; 39(12):1359-66. PubMed ID: 16298866
    [Abstract] [Full Text] [Related]

  • 5. Correlation of nuclear color and opalescence with protein S-thiolation in human lenses.
    Lou MF, Dickerson JE, Tung WH, Wolfe JK, Chylack LT.
    Exp Eye Res; 1999 May; 68(5):547-52. PubMed ID: 10328968
    [Abstract] [Full Text] [Related]

  • 6. Alteration of lens disulfide bonds in newly developed hereditary cataract rat.
    Mizuno A, Shumiya S, Toshima S, Nakano T.
    Jpn J Ophthalmol; 1992 May; 36(4):417-25. PubMed ID: 1289618
    [Abstract] [Full Text] [Related]

  • 7. The effects of age and hyperhomocysteinemia on the redox forms of plasma thiols.
    Di Giuseppe D, Frosali S, Priora R, Di Simplicio FC, Buonocore G, Cellesi C, Capecchi PL, Pasini FL, Lazzerini PE, Jakubowski H, Di Simplicio P.
    J Lab Clin Med; 2004 Nov; 144(5):235-45. PubMed ID: 15570241
    [Abstract] [Full Text] [Related]

  • 8. Relationship of protein-glutathione mixed disulfide and thioltransferase in H2O2-induced cataract in cultured pig lens.
    Wang GM, Raghavachari N, Lou MF.
    Exp Eye Res; 1997 May; 64(5):693-700. PubMed ID: 9245898
    [Abstract] [Full Text] [Related]

  • 9. A Raman study of disulfide and sulfhydryl in the Emory mouse cataract.
    DeNagel DC, Bando M, Yu NT, Kuck JF.
    Invest Ophthalmol Vis Sci; 1988 May; 29(5):823-6. PubMed ID: 3366572
    [Abstract] [Full Text] [Related]

  • 10. Thiol oxidation in the crystalline lens. I. The rate-limiting role of hexokinase in aging rat and human lenses.
    Cheng HM, Chylack LT.
    Invest Ophthalmol Vis Sci; 1980 May; 19(5):522-8. PubMed ID: 7372415
    [Abstract] [Full Text] [Related]

  • 11. Characterization of water-insoluble proteins in normal and cataractous human lens.
    Kamei A.
    Jpn J Ophthalmol; 1990 May; 34(2):216-24. PubMed ID: 2214364
    [Abstract] [Full Text] [Related]

  • 12. Protein-thiol substitution or protein dethiolation by thiol/disulfide exchange reactions: the albumin model.
    Summa D, Spiga O, Bernini A, Venditti V, Priora R, Frosali S, Margaritis A, Di Giuseppe D, Niccolai N, Di Simplicio P.
    Proteins; 2007 Nov 01; 69(2):369-78. PubMed ID: 17607746
    [Abstract] [Full Text] [Related]

  • 13. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V, Srivastava OP, Kirk M.
    Mol Vis; 2007 Sep 14; 13():1680-94. PubMed ID: 17893670
    [Abstract] [Full Text] [Related]

  • 14. [Free radical oxidation of lipids and thiol groups in the formation of a cataract].
    Babizhaev MA, Deev AI.
    Biofizika; 1986 Sep 14; 31(1):109-14. PubMed ID: 3955083
    [Abstract] [Full Text] [Related]

  • 15. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V, McCall S, Huynh S, Srivastava K, Srivastava OP.
    Mol Vis; 2004 Jul 19; 10():476-89. PubMed ID: 15303090
    [Abstract] [Full Text] [Related]

  • 16. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P, Saxena AK, Cui XL, Obrenovich M, Gudipaty K, Monnier VM.
    Invest Ophthalmol Vis Sci; 2000 May 19; 41(6):1473-81. PubMed ID: 10798665
    [Abstract] [Full Text] [Related]

  • 17. The presence of a human UV filter within the lens represents an oxidative stress.
    Berry Y, Truscott RJ.
    Exp Eye Res; 2001 Apr 19; 72(4):411-21. PubMed ID: 11273669
    [Abstract] [Full Text] [Related]

  • 18. Protein oxidation and lens opacity in humans.
    Boscia F, Grattagliano I, Vendemiale G, Micelli-Ferrari T, Altomare E.
    Invest Ophthalmol Vis Sci; 2000 Aug 19; 41(9):2461-5. PubMed ID: 10937554
    [Abstract] [Full Text] [Related]

  • 19. Thiol regulation in the lens.
    Lou MF.
    J Ocul Pharmacol Ther; 2000 Apr 19; 16(2):137-48. PubMed ID: 10803424
    [Abstract] [Full Text] [Related]

  • 20. Intermolecular disulfide bonding of lens membrane proteins during human cataractogenesis.
    Takemoto LJ, Hansen JS.
    Invest Ophthalmol Vis Sci; 1982 Mar 19; 22(3):336-42. PubMed ID: 7061206
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.