These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Photosynthetic Electron and Proton Transport in Chloroplasts: EPR Study of ΔpH Generation, an Overview. Tikhonov AN. Cell Biochem Biophys; 2017 Dec; 75(3-4):421-432. PubMed ID: 28488221 [Abstract] [Full Text] [Related]
4. Computer modeling of electron and proton transport in chloroplasts. Tikhonov AN, Vershubskii AV. Biosystems; 2014 Jul; 121():1-21. PubMed ID: 24835748 [Abstract] [Full Text] [Related]
8. Effects of diffusion and topological factors on the efficiency of energy coupling in chloroplasts with heterogeneous partitioning of protein complexes in thylakoids of grana and stroma. A mathematical model. Vershubskii AV, Priklonskii VI, Tikhonov AN. Biochemistry (Mosc); 2004 Sep; 69(9):1016-24. PubMed ID: 15521816 [Abstract] [Full Text] [Related]
9. Functional and topological aspects of pH-dependent regulation of electron and proton transport in chloroplasts in silico. Vershubskii AV, Kuvykin IV, Priklonskii VI, Tikhonov AN. Biosystems; 2011 Feb; 103(2):164-79. PubMed ID: 20736046 [Abstract] [Full Text] [Related]
10. [Mathematical modeling of electron and protein transport, coupled with ATP synthesis in chloroplasts]. Vershubskiĭ AV, Priklonskiĭ VI, Tikhonov AN. Biofizika; 2004 Feb; 49(1):57-71. PubMed ID: 15029721 [Abstract] [Full Text] [Related]
12. Influence of unsaturated fatty acids in chloroplasts. Shift of the pH optimum of electron flow and relations to deltapH, thylakoid internal pH and proton uptake. Siegenthaler PA, Depéry F. Eur J Biochem; 1976 Jan 15; 61(2):573-80. PubMed ID: 2470 [Abstract] [Full Text] [Related]
13. Correlation between spatial (3D) structure of pea and bean thylakoid membranes and arrangement of chlorophyll-protein complexes. Rumak I, Mazur R, Gieczewska K, Kozioł-Lipińska J, Kierdaszuk B, Michalski WP, Shiell BJ, Venema JH, Vredenberg WJ, Mostowska A, Garstka M. BMC Plant Biol; 2012 May 25; 12():72. PubMed ID: 22631450 [Abstract] [Full Text] [Related]
14. A new fluorescence-based method to monitor the pH in the thylakoid lumen using GFP variants. Yang H, Pu X, Wang L, Liu L, Theg SM. Biochem Biophys Res Commun; 2017 Apr 22; 486(1):1-5. PubMed ID: 27940360 [Abstract] [Full Text] [Related]
15. Contribution of Cyclic and Pseudo-cyclic Electron Transport to the Formation of Proton Motive Force in Chloroplasts. Shikanai T, Yamamoto H. Mol Plant; 2017 Jan 09; 10(1):20-29. PubMed ID: 27575692 [Abstract] [Full Text] [Related]
17. Relative contributions of PGR5- and NDH-dependent photosystem I cyclic electron flow in the generation of a proton gradient in Arabidopsis chloroplasts. Kawashima R, Sato R, Harada K, Masuda S. Planta; 2017 Nov 09; 246(5):1045-1050. PubMed ID: 28828567 [Abstract] [Full Text] [Related]
18. Lateral heterogeneity of plant thylakoid protein complexes: early reminiscences. Anderson JM. Philos Trans R Soc Lond B Biol Sci; 2012 Dec 19; 367(1608):3384-8. PubMed ID: 23148264 [Abstract] [Full Text] [Related]
19. Proton gradient across the chloroplast thylakoid membrane governs the redox regulatory function of ATP synthase. Sekiguchi T, Yoshida K, Wakabayashi KI, Hisabori T. J Biol Chem; 2024 Sep 19; 300(9):107659. PubMed ID: 39128728 [Abstract] [Full Text] [Related]
20. Rethinking the existence of a steady-state Δψ component of the proton motive force across plant thylakoid membranes. Johnson MP, Ruban AV. Photosynth Res; 2014 Feb 19; 119(1-2):233-42. PubMed ID: 23539362 [Abstract] [Full Text] [Related] Page: [Next] [New Search]