These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


228 related items for PubMed ID: 27936563

  • 41. Thermal rectification in three-dimensional asymmetric nanostructure.
    Lee J, Varshney V, Roy AK, Ferguson JB, Farmer BL.
    Nano Lett; 2012 Jul 11; 12(7):3491-6. PubMed ID: 22716162
    [Abstract] [Full Text] [Related]

  • 42. Phonon thermal rectification in hybrid graphene-[Formula: see text]: a molecular dynamics simulation.
    Farzadian O, Razeghiyadaki A, Spitas C, Kostas KV.
    Nanotechnology; 2020 Nov 27; 31(48):485401. PubMed ID: 32931472
    [Abstract] [Full Text] [Related]

  • 43. High-field electrical and thermal transport in suspended graphene.
    Dorgan VE, Behnam A, Conley HJ, Bolotin KI, Pop E.
    Nano Lett; 2013 Oct 09; 13(10):4581-6. PubMed ID: 23387323
    [Abstract] [Full Text] [Related]

  • 44. Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures.
    Vadahanambi S, Lee SH, Kim WJ, Oh IK.
    Environ Sci Technol; 2013 Sep 17; 47(18):10510-7. PubMed ID: 23947834
    [Abstract] [Full Text] [Related]

  • 45.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 46. High-field transport and thermal reliability of sorted carbon nanotube network devices.
    Behnam A, Sangwan VK, Zhong X, Lian F, Estrada D, Jariwala D, Hoag AJ, Lauhon LJ, Marks TJ, Hersam MC, Pop E.
    ACS Nano; 2013 Jan 22; 7(1):482-90. PubMed ID: 23259715
    [Abstract] [Full Text] [Related]

  • 47. A novel solid-state thermal rectifier based on reduced graphene oxide.
    Tian H, Xie D, Yang Y, Ren TL, Zhang G, Wang YF, Zhou CJ, Peng PG, Wang LG, Liu LT.
    Sci Rep; 2012 Jan 22; 2():523. PubMed ID: 22826801
    [Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51. Graphene oxide as a multi-functional p-dopant of transparent single-walled carbon nanotube films for optoelectronic devices.
    Han JT, Kim JS, Jo SB, Kim SH, Kim JS, Kang B, Jeong HJ, Jeong SY, Lee GW, Cho K.
    Nanoscale; 2012 Dec 21; 4(24):7735-42. PubMed ID: 23135484
    [Abstract] [Full Text] [Related]

  • 52. Thermal stability of graphene and nanotube covalent functionalization.
    Margine ER, Bocquet ML, Blase X.
    Nano Lett; 2008 Oct 21; 8(10):3315-9. PubMed ID: 18767882
    [Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55. A facile one-pot method to synthesize a three-dimensional graphene@carbon nanotube composite as a high-efficiency microwave absorber.
    Wang L, Huang Y, Li C, Chen J, Sun X.
    Phys Chem Chem Phys; 2015 Jan 21; 17(3):2228-34. PubMed ID: 25485522
    [Abstract] [Full Text] [Related]

  • 56.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 57.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 58.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 59.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 60.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.