These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


306 related items for PubMed ID: 27938489

  • 21. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats.
    Okuda A, Horii-Hayashi N, Sasagawa T, Shimizu T, Shigematsu H, Iwata E, Morimoto Y, Masuda K, Koizumi M, Akahane M, Nishi M, Tanaka Y.
    J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959
    [Abstract] [Full Text] [Related]

  • 22. Combination of activated Schwann cells with bone mesenchymal stem cells: the best cell strategy for repair after spinal cord injury in rats.
    Ban DX, Ning GZ, Feng SQ, Wang Y, Zhou XH, Liu Y, Chen JT.
    Regen Med; 2011 Nov; 6(6):707-20. PubMed ID: 22050523
    [Abstract] [Full Text] [Related]

  • 23. Transplantation of human bone marrow-derived stromal cells into the contused spinal cord of nude rats.
    Sheth RN, Manzano G, Li X, Levi AD.
    J Neurosurg Spine; 2008 Feb; 8(2):153-62. PubMed ID: 18248287
    [Abstract] [Full Text] [Related]

  • 24. Embryonic radial glia bridge spinal cord lesions and promote functional recovery following spinal cord injury.
    Hasegawa K, Chang YW, Li H, Berlin Y, Ikeda O, Kane-Goldsmith N, Grumet M.
    Exp Neurol; 2005 Jun; 193(2):394-410. PubMed ID: 15869942
    [Abstract] [Full Text] [Related]

  • 25. Transplantation of human glial restricted progenitors and derived astrocytes into a contusion model of spinal cord injury.
    Jin Y, Neuhuber B, Singh A, Bouyer J, Lepore A, Bonner J, Himes T, Campanelli JT, Fischer I.
    J Neurotrauma; 2011 Apr; 28(4):579-94. PubMed ID: 21222572
    [Abstract] [Full Text] [Related]

  • 26. Effects of treating traumatic brain injury with collagen scaffolds and human bone marrow stromal cells on sprouting of corticospinal tract axons into the denervated side of the spinal cord.
    Mahmood A, Wu H, Qu C, Xiong Y, Chopp M.
    J Neurosurg; 2013 Feb; 118(2):381-9. PubMed ID: 23198801
    [Abstract] [Full Text] [Related]

  • 27. Functional recovery after the transplantation of neurally differentiated mesenchymal stem cells derived from bone marrow in a rat model of spinal cord injury.
    Cho SR, Kim YR, Kang HS, Yim SH, Park CI, Min YH, Lee BH, Shin JC, Lim JB.
    Cell Transplant; 2009 Feb; 18(12):1359-68. PubMed ID: 20184788
    [Abstract] [Full Text] [Related]

  • 28. Mesenchymal stem cells as an alternative for Schwann cells in rat spinal cord injury.
    Zaminy A, Shokrgozar MA, Sadeghi Y, Noroozian M, Heidari MH, Piryaei A.
    Iran Biomed J; 2013 Feb; 17(3):113-22. PubMed ID: 23748888
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. The enhancement of CCL2 and CCL5 by human bone marrow-derived mesenchymal stem/stromal cells might contribute to inflammatory suppression and axonal extension after spinal cord injury.
    Yagura K, Ohtaki H, Tsumuraya T, Sato A, Miyamoto K, Kawada N, Suzuki K, Nakamura M, Kanzaki K, Dohi K, Izumizaki M, Hiraizumi Y, Honda K.
    PLoS One; 2020 Feb; 15(3):e0230080. PubMed ID: 32155215
    [Abstract] [Full Text] [Related]

  • 32. Self-assembling peptides optimize the post-traumatic milieu and synergistically enhance the effects of neural stem cell therapy after cervical spinal cord injury.
    Zweckberger K, Ahuja CS, Liu Y, Wang J, Fehlings MG.
    Acta Biomater; 2016 Sep 15; 42():77-89. PubMed ID: 27296842
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Regionally Specific Human Pre-Oligodendrocyte Progenitor Cells Produce Both Oligodendrocytes and Neurons after Transplantation in a Chronically Injured Spinal Cord Rat Model after Glial Scar Ablation.
    Patil N, Walsh P, Carrabre K, Holmberg EG, Lavoie N, Dutton JR, Parr AM.
    J Neurotrauma; 2021 Mar 15; 38(6):777-788. PubMed ID: 33107383
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Induced Pluripotent Stem Cell Transplantation Improves Locomotor Recovery in Rat Models of Spinal Cord Injury: a Systematic Review and Meta-Analysis of Randomized Controlled Trials.
    Qin C, Guo Y, Yang DG, Yang ML, Du LJ, Li JJ.
    Cell Physiol Biochem; 2018 Mar 15; 47(5):1835-1852. PubMed ID: 29961052
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Connexin 50 Expression in Ependymal Stem Progenitor Cells after Spinal Cord Injury Activation.
    Rodriguez-Jimenez FJ, Alastrue-Agudo A, Stojkovic M, Erceg S, Moreno-Manzano V.
    Int J Mol Sci; 2015 Nov 06; 16(11):26608-18. PubMed ID: 26561800
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 16.