These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


215 related items for PubMed ID: 27976589

  • 1. A Key Role of Xanthophylls That Are Not Embedded in Proteins in Regulation of the Photosynthetic Antenna Function in Plants, Revealed by Monomolecular Layer Studies.
    Welc R, Luchowski R, Grudzinski W, Puzio M, Sowinski K, Gruszecki WI.
    J Phys Chem B; 2016 Dec 29; 120(51):13056-13064. PubMed ID: 27976589
    [Abstract] [Full Text] [Related]

  • 2. The role of xanthophylls in the supramolecular organization of the photosynthetic complex LHCII in lipid membranes studied by high-resolution imaging and nanospectroscopy.
    Zhou J, Sekatskii S, Welc R, Dietler G, Gruszecki WI.
    Biochim Biophys Acta Bioenerg; 2020 Feb 01; 1861(2):148117. PubMed ID: 31734197
    [Abstract] [Full Text] [Related]

  • 3. The xanthophyll cycle pigments, violaxanthin and zeaxanthin, modulate molecular organization of the photosynthetic antenna complex LHCII.
    Janik E, Bednarska J, Zubik M, Sowinski K, Luchowski R, Grudzinski W, Matosiuk D, Gruszecki WI.
    Arch Biochem Biophys; 2016 Feb 15; 592():1-9. PubMed ID: 26773208
    [Abstract] [Full Text] [Related]

  • 4. Effect of 13-cis violaxanthin on organization of light harvesting complex II in monomolecular layers.
    Grudziński W, Matuła M, Sielewiesiuk J, Kernen P, Krupa Z, Gruszecki WI.
    Biochim Biophys Acta; 2001 Jan 19; 1503(3):291-302. PubMed ID: 11115641
    [Abstract] [Full Text] [Related]

  • 5. Xanthophyll-induced aggregation of LHCII as a switch between light-harvesting and energy dissipation systems.
    Gruszecki WI, Grudzinski W, Gospodarek M, Patyra M, Maksymiec W.
    Biochim Biophys Acta; 2006 Nov 19; 1757(11):1504-11. PubMed ID: 16978579
    [Abstract] [Full Text] [Related]

  • 6. A novel method produces native light-harvesting complex II aggregates from the photosynthetic membrane revealing their role in nonphotochemical quenching.
    Shukla MK, Watanabe A, Wilson S, Giovagnetti V, Moustafa EI, Minagawa J, Ruban AV.
    J Biol Chem; 2020 Dec 18; 295(51):17816-17826. PubMed ID: 33454016
    [Abstract] [Full Text] [Related]

  • 7. The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching.
    Sacharz J, Giovagnetti V, Ungerer P, Mastroianni G, Ruban AV.
    Nat Plants; 2017 Jan 30; 3():16225. PubMed ID: 28134919
    [Abstract] [Full Text] [Related]

  • 8. Single-molecule microscopy studies of LHCII enriched in Vio or Zea.
    Tutkus M, Saccon F, Chmeliov J, Venckus O, Ciplys I, Ruban AV, Valkunas L.
    Biochim Biophys Acta Bioenerg; 2019 Jun 01; 1860(6):499-507. PubMed ID: 31055058
    [Abstract] [Full Text] [Related]

  • 9. Molecular architecture of plant thylakoids under physiological and light stress conditions: a study of lipid-light-harvesting complex II model membranes.
    Janik E, Bednarska J, Zubik M, Puzio M, Luchowski R, Grudzinski W, Mazur R, Garstka M, Maksymiec W, Kulik A, Dietler G, Gruszecki WI.
    Plant Cell; 2013 Jun 01; 25(6):2155-70. PubMed ID: 23898030
    [Abstract] [Full Text] [Related]

  • 10. A few molecules of zeaxanthin per reaction centre of photosystem II permit effective thermal dissipation of light energy in photosystem II of a poikilohydric moss.
    Bukhov NG, Kopecky J, Pfündel EE, Klughammer C, Heber U.
    Planta; 2001 Apr 01; 212(5-6):739-48. PubMed ID: 11346947
    [Abstract] [Full Text] [Related]

  • 11. Snapshot Transient Absorption Spectroscopy of Carotenoid Radical Cations in High-Light-Acclimating Thylakoid Membranes.
    Park S, Fischer AL, Li Z, Bassi R, Niyogi KK, Fleming GR.
    J Phys Chem Lett; 2017 Nov 16; 8(22):5548-5554. PubMed ID: 29083901
    [Abstract] [Full Text] [Related]

  • 12. Supramolecular organization of the main photosynthetic antenna complex LHCII: a monomolecular layer study.
    Gruszecki WI, Janik E, Luchowski R, Kernen P, Grudzinski W, Gryczynski I, Gryczynski Z.
    Langmuir; 2009 Aug 18; 25(16):9384-91. PubMed ID: 19382785
    [Abstract] [Full Text] [Related]

  • 13. A theoretical investigation of the photophysical consequences of major plant light-harvesting complex aggregation within the photosynthetic membrane.
    Duffy CD, Johnson MP, Macernis M, Valkunas L, Barford W, Ruban AV.
    J Phys Chem B; 2010 Nov 25; 114(46):15244-53. PubMed ID: 20964339
    [Abstract] [Full Text] [Related]

  • 14. Changes in the energy transfer pathways within photosystem II antenna induced by xanthophyll cycle activity.
    Ilioaia C, Duffy CD, Johnson MP, Ruban AV.
    J Phys Chem B; 2013 May 16; 117(19):5841-7. PubMed ID: 23597158
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Light-driven regulatory mechanisms in the photosynthetic antenna complex LHCII.
    Gruszecki WI.
    Biochem Soc Trans; 2010 Apr 16; 38(2):702-4. PubMed ID: 20298246
    [Abstract] [Full Text] [Related]

  • 17. Chlorophyll fluorescence quenching in isolated light harvesting complexes induced by zeaxanthin.
    Wentworth M, Ruban AV, Horton P.
    FEBS Lett; 2000 Apr 07; 471(1):71-4. PubMed ID: 10760515
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Different roles of alpha- and beta-branch xanthophylls in photosystem assembly and photoprotection.
    Dall'Osto L, Fiore A, Cazzaniga S, Giuliano G, Bassi R.
    J Biol Chem; 2007 Nov 30; 282(48):35056-68. PubMed ID: 17913714
    [Abstract] [Full Text] [Related]

  • 20. Identification and characterization of multiple emissive species in aggregated minor antenna complexes.
    Wahadoszamen M, Belgio E, Rahman MA, Ara AM, Ruban AV, van Grondelle R.
    Biochim Biophys Acta; 2016 Dec 30; 1857(12):1917-1924. PubMed ID: 27666345
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.