These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


301 related items for PubMed ID: 27978434

  • 1. An Apicomplexan Actin-Binding Protein Serves as a Connector and Lipid Sensor to Coordinate Motility and Invasion.
    Jacot D, Tosetti N, Pires I, Stock J, Graindorge A, Hung YF, Han H, Tewari R, Kursula I, Soldati-Favre D.
    Cell Host Microbe; 2016 Dec 14; 20(6):731-743. PubMed ID: 27978434
    [Abstract] [Full Text] [Related]

  • 2. Microneme proteins: structural and functional requirements to promote adhesion and invasion by the apicomplexan parasite Toxoplasma gondii.
    Soldati D, Dubremetz JF, Lebrun M.
    Int J Parasitol; 2001 Oct 14; 31(12):1293-302. PubMed ID: 11566297
    [Abstract] [Full Text] [Related]

  • 3. Molecular dissection of host cell invasion by the apicomplexans: the glideosome.
    Soldati-Favre D.
    Parasite; 2008 Sep 14; 15(3):197-205. PubMed ID: 18814681
    [Abstract] [Full Text] [Related]

  • 4. Gliding motility powers invasion and egress in Apicomplexa.
    Frénal K, Dubremetz JF, Lebrun M, Soldati-Favre D.
    Nat Rev Microbiol; 2017 Nov 14; 15(11):645-660. PubMed ID: 28867819
    [Abstract] [Full Text] [Related]

  • 5. Structural and regulatory insights into the glideosome-associated connector from Toxoplasma gondii.
    Kumar A, Vadas O, Dos Santos Pacheco N, Zhang X, Chao K, Darvill N, Rasmussen HØ, Xu Y, Lin GM, Stylianou FA, Pedersen JS, Rouse SL, Morgan ML, Soldati-Favre D, Matthews S.
    Elife; 2023 Apr 04; 12():. PubMed ID: 37014051
    [Abstract] [Full Text] [Related]

  • 6. Surface attachment, promoted by the actomyosin system of Toxoplasma gondii is important for efficient gliding motility and invasion.
    Whitelaw JA, Latorre-Barragan F, Gras S, Pall GS, Leung JM, Heaslip A, Egarter S, Andenmatten N, Nelson SR, Warshaw DM, Ward GE, Meissner M.
    BMC Biol; 2017 Jan 18; 15(1):1. PubMed ID: 28100223
    [Abstract] [Full Text] [Related]

  • 7. The glideosome: a molecular machine powering motility and host-cell invasion by Apicomplexa.
    Keeley A, Soldati D.
    Trends Cell Biol; 2004 Oct 18; 14(10):528-32. PubMed ID: 15450974
    [Abstract] [Full Text] [Related]

  • 8. A conserved molecular motor drives cell invasion and gliding motility across malaria life cycle stages and other apicomplexan parasites.
    Baum J, Richard D, Healer J, Rug M, Krnajski Z, Gilberger TW, Green JL, Holder AA, Cowman AF.
    J Biol Chem; 2006 Feb 24; 281(8):5197-208. PubMed ID: 16321976
    [Abstract] [Full Text] [Related]

  • 9. Gliding motility in apicomplexan parasites.
    Heintzelman MB.
    Semin Cell Dev Biol; 2015 Oct 24; 46():135-42. PubMed ID: 26428297
    [Abstract] [Full Text] [Related]

  • 10. Conservation of a gliding motility and cell invasion machinery in Apicomplexan parasites.
    Kappe S, Bruderer T, Gantt S, Fujioka H, Nussenzweig V, Ménard R.
    J Cell Biol; 1999 Nov 29; 147(5):937-44. PubMed ID: 10579715
    [Abstract] [Full Text] [Related]

  • 11. The role of the cytoskeleton in host cell invasion by Toxoplasma gondii.
    Dobrowolski J, Sibley LD.
    Behring Inst Mitt; 1997 Mar 29; (99):90-6. PubMed ID: 9303207
    [Abstract] [Full Text] [Related]

  • 12. Conoid extrusion regulates glideosome assembly to control motility and invasion in Apicomplexa.
    Dos Santos Pacheco N, Brusini L, Haase R, Tosetti N, Maco B, Brochet M, Vadas O, Soldati-Favre D.
    Nat Microbiol; 2022 Nov 29; 7(11):1777-1790. PubMed ID: 36109645
    [Abstract] [Full Text] [Related]

  • 13. Phosphatidic Acid-Mediated Signaling Regulates Microneme Secretion in Toxoplasma.
    Bullen HE, Jia Y, Yamaryo-Botté Y, Bisio H, Zhang O, Jemelin NK, Marq JB, Carruthers V, Botté CY, Soldati-Favre D.
    Cell Host Microbe; 2016 Mar 09; 19(3):349-60. PubMed ID: 26962945
    [Abstract] [Full Text] [Related]

  • 14. Structural Basis of Phosphatidic Acid Sensing by APH in Apicomplexan Parasites.
    Darvill N, Dubois DJ, Rouse SL, Hammoudi PM, Blake T, Benjamin S, Liu B, Soldati-Favre D, Matthews S.
    Structure; 2018 Aug 07; 26(8):1059-1071.e6. PubMed ID: 29910186
    [Abstract] [Full Text] [Related]

  • 15. The triumvirate of signaling molecules controlling Toxoplasma microneme exocytosis: Cyclic GMP, calcium, and phosphatidic acid.
    Bullen HE, Bisio H, Soldati-Favre D.
    PLoS Pathog; 2019 May 07; 15(5):e1007670. PubMed ID: 31121005
    [Abstract] [Full Text] [Related]

  • 16. [The glideosome, a unique machinery that assists the Apicomplexa in gliding into host cells].
    Frénal K, Soldati-Favre D.
    Med Sci (Paris); 2013 May 07; 29(5):515-22. PubMed ID: 23732101
    [Abstract] [Full Text] [Related]

  • 17. Regulation of apicomplexan actin-based motility.
    Baum J, Papenfuss AT, Baum B, Speed TP, Cowman AF.
    Nat Rev Microbiol; 2006 Aug 07; 4(8):621-8. PubMed ID: 16845432
    [Abstract] [Full Text] [Related]

  • 18. Evolutionarily divergent, unstable filamentous actin is essential for gliding motility in apicomplexan parasites.
    Skillman KM, Diraviyam K, Khan A, Tang K, Sept D, Sibley LD.
    PLoS Pathog; 2011 Oct 07; 7(10):e1002280. PubMed ID: 21998582
    [Abstract] [Full Text] [Related]

  • 19. Environmental sensing and regulation of motility in Toxoplasma.
    Uboldi AD, Wilde ML, Bader SM, Tonkin CJ.
    Mol Microbiol; 2021 May 07; 115(5):916-929. PubMed ID: 33278047
    [Abstract] [Full Text] [Related]

  • 20. Plasticity between MyoC- and MyoA-glideosomes: an example of functional compensation in Toxoplasma gondii invasion.
    Frénal K, Marq JB, Jacot D, Polonais V, Soldati-Favre D.
    PLoS Pathog; 2014 Oct 07; 10(10):e1004504. PubMed ID: 25393004
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.