These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. CRISPR-Cas9-mediated efficient directed mutagenesis and RAD51-dependent and RAD51-independent gene targeting in the moss Physcomitrella patens. Collonnier C, Epert A, Mara K, Maclot F, Guyon-Debast A, Charlot F, White C, Schaefer DG, Nogué F. Plant Biotechnol J; 2017 Jan; 15(1):122-131. PubMed ID: 27368642 [Abstract] [Full Text] [Related]
4. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs. Yamamoto A, Ishida T, Yoshimura M, Kimura Y, Sawa S. Plant Cell Physiol; 2019 Oct 01; 60(10):2255-2262. PubMed ID: 31198958 [Abstract] [Full Text] [Related]
5. Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles. Hyun Y, Kim J, Cho SW, Choi Y, Kim JS, Coupland G. Planta; 2015 Jan 01; 241(1):271-84. PubMed ID: 25269397 [Abstract] [Full Text] [Related]
8. Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system. Chen X, Lu X, Shu N, Wang S, Wang J, Wang D, Guo L, Ye W. Sci Rep; 2017 Mar 13; 7():44304. PubMed ID: 28287154 [Abstract] [Full Text] [Related]
11. Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Endo M, Mikami M, Toki S. Plant Cell Physiol; 2015 Jan 13; 56(1):41-7. PubMed ID: 25392068 [Abstract] [Full Text] [Related]
12. Development of CRISPR/Cas9 for Efficient Genome Editing in Toxoplasma gondii. Shen B, Brown K, Long S, Sibley LD. Methods Mol Biol; 2017 Jan 13; 1498():79-103. PubMed ID: 27709570 [Abstract] [Full Text] [Related]
13. An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Char SN, Neelakandan AK, Nahampun H, Frame B, Main M, Spalding MH, Becraft PW, Meyers BC, Walbot V, Wang K, Yang B. Plant Biotechnol J; 2017 Feb 13; 15(2):257-268. PubMed ID: 27510362 [Abstract] [Full Text] [Related]
15. CRISPR-Cas9-Mediated Genome Editing and Transcriptional Control in Yarrowia lipolytica. Schwartz C, Wheeldon I. Methods Mol Biol; 2018 Feb 13; 1772():327-345. PubMed ID: 29754237 [Abstract] [Full Text] [Related]
16. A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Tang X, Liu G, Zhou J, Ren Q, You Q, Tian L, Xin X, Zhong Z, Liu B, Zheng X, Zhang D, Malzahn A, Gong Z, Qi Y, Zhang T, Zhang Y. Genome Biol; 2018 Jul 04; 19(1):84. PubMed ID: 29973285 [Abstract] [Full Text] [Related]
17. Targeted genome editing in human cells using CRISPR/Cas nucleases and truncated guide RNAs. Fu Y, Reyon D, Joung JK. Methods Enzymol; 2014 Jul 04; 546():21-45. PubMed ID: 25398334 [Abstract] [Full Text] [Related]
18. CRISPR/Cas9-Based Multiplex Genome Editing in Monocot and Dicot Plants. Ma X, Liu YG. Curr Protoc Mol Biol; 2016 Jul 01; 115():31.6.1-31.6.21. PubMed ID: 27366892 [Abstract] [Full Text] [Related]
19. mCAL: A New Approach for Versatile Multiplex Action of Cas9 Using One sgRNA and Loci Flanked by a Programmed Target Sequence. Finnigan GC, Thorner J. G3 (Bethesda); 2016 Jul 07; 6(7):2147-56. PubMed ID: 27185399 [Abstract] [Full Text] [Related]
20. Comparison of Various Nuclear Localization Signal-Fused Cas9 Proteins and Cas9 mRNA for Genome Editing in Zebrafish. Hu P, Zhao X, Zhang Q, Li W, Zu Y. G3 (Bethesda); 2018 Mar 02; 8(3):823-831. PubMed ID: 29295818 [Abstract] [Full Text] [Related] Page: [Next] [New Search]