These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


385 related items for PubMed ID: 27987474

  • 1. Temperature and CO2 dependency of the photosynthetic photon flux density responses of leaves of Vitis vinifera cvs. Chardonnay and Merlot grown in a hot climate.
    Greer DH.
    Plant Physiol Biochem; 2017 Feb; 111():295-303. PubMed ID: 27987474
    [Abstract] [Full Text] [Related]

  • 2. Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera cv. Semillon) leaves on vines grown in a hot climate.
    Greer DH, Weedon MM.
    Plant Cell Environ; 2012 Jun; 35(6):1050-64. PubMed ID: 22150771
    [Abstract] [Full Text] [Related]

  • 3. Modelling seasonal changes in the temperature-dependency of CO2 photosynthetic responses in two Vitis vinifera cultivars.
    Greer DH.
    Funct Plant Biol; 2018 Feb; 45(3):315-327. PubMed ID: 32290955
    [Abstract] [Full Text] [Related]

  • 4. Intraspecific differences in the photosynthetic responses to chloroplast CO2 and photon flux density at different leaf temperatures of four grapevine cultivars grown in common outdoor conditions.
    Greer DH.
    Plant Direct; 2024 Jun; 8(6):e595. PubMed ID: 38855127
    [Abstract] [Full Text] [Related]

  • 5. How will climate change influence grapevine cv. Tempranillo photosynthesis under different soil textures?
    Leibar U, Aizpurua A, Unamunzaga O, Pascual I, Morales F.
    Photosynth Res; 2015 May; 124(2):199-215. PubMed ID: 25786733
    [Abstract] [Full Text] [Related]

  • 6. Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses.
    Salazar-Parra C, Aranjuelo I, Pascual I, Erice G, Sanz-Sáez Á, Aguirreolea J, Sánchez-Díaz M, Irigoyen JJ, Araus JL, Morales F.
    J Plant Physiol; 2015 Feb 01; 174():97-109. PubMed ID: 25462972
    [Abstract] [Full Text] [Related]

  • 7. Nocturnal and daytime stomatal conductance respond to root-zone temperature in 'Shiraz' grapevines.
    Rogiers SY, Clarke SJ.
    Ann Bot; 2013 Mar 01; 111(3):433-44. PubMed ID: 23293018
    [Abstract] [Full Text] [Related]

  • 8. Short- and long-term physiological responses of grapevine leaves to UV-B radiation.
    Martínez-Lüscher J, Morales F, Delrot S, Sánchez-Díaz M, Gomés E, Aguirreolea J, Pascual I.
    Plant Sci; 2013 Dec 01; 213():114-22. PubMed ID: 24157214
    [Abstract] [Full Text] [Related]

  • 9. Interactions between light and growing season temperatures on, growth and development and gas exchange of Semillon (Vitis vinifera L.) vines grown in an irrigated vineyard.
    Greer DH, Weedon MM.
    Plant Physiol Biochem; 2012 May 01; 54():59-69. PubMed ID: 22381656
    [Abstract] [Full Text] [Related]

  • 10. Photosynthetic responses to heat treatments at different temperatures and following recovery in grapevine (Vitis amurensis L.) leaves.
    Luo HB, Ma L, Xi HF, Duan W, Li SH, Loescher W, Wang JF, Wang LJ.
    PLoS One; 2011 May 01; 6(8):e23033. PubMed ID: 21887227
    [Abstract] [Full Text] [Related]

  • 11. Short-term temperature dependency of the photosynthetic and PSII photochemical responses to photon flux density of leaves of Vitis vinifera cv. Shiraz vines grown in field conditions with and without fruit.
    Greer DH.
    Funct Plant Biol; 2019 Jun 01; 46(7):634-648. PubMed ID: 30967170
    [Abstract] [Full Text] [Related]

  • 12. Leaf traits and photosynthetic responses of Betula pendula saplings to a range of ground-level ozone concentrations at a range of nitrogen loads.
    Harmens H, Hayes F, Sharps K, Mills G, Calatayud V.
    J Plant Physiol; 2017 Apr 01; 211():42-52. PubMed ID: 28152417
    [Abstract] [Full Text] [Related]

  • 13. Leaf temperature and CO2 effects on photosynthetic CO2 assimilation and chlorophyll a fluorescence light responses during mid-ripening of Vitis vinifera cv. Shiraz grapevines grown in outdoor conditions.
    Greer DH.
    Funct Plant Biol; 2022 Jun 01; 49(7):659-671. PubMed ID: 35339204
    [Abstract] [Full Text] [Related]

  • 14. Changes in photosynthesis and chlorophyll a fluorescence in relation to leaf temperature from just before to after harvest of Vitis vinifera cv. Shiraz vines grown in outdoor conditions.
    Greer DH.
    Funct Plant Biol; 2022 Jan 01; 49(2):170-185. PubMed ID: 34883042
    [Abstract] [Full Text] [Related]

  • 15. Physiological parameters and protective energy dissipation mechanisms expressed in the leaves of two Vitis vinifera L. genotypes under multiple summer stresses.
    Palliotti A, Tombesi S, Frioni T, Silvestroni O, Lanari V, D'Onofrio C, Matarese F, Bellincontro A, Poni S.
    J Plant Physiol; 2015 Aug 01; 185():84-92. PubMed ID: 26310367
    [Abstract] [Full Text] [Related]

  • 16. Photosynthetic heat tolerance of shade and sun leaves of three tropical tree species.
    Slot M, Krause GH, Krause B, Hernández GG, Winter K.
    Photosynth Res; 2019 Jul 01; 141(1):119-130. PubMed ID: 30054784
    [Abstract] [Full Text] [Related]

  • 17. Modelling the seasonal changes in the gas exchange response to CO2 in relation to short-term leaf temperature changes in Vitis vinifera cv. Shiraz grapevines grown in outdoor conditions.
    Greer DH.
    Plant Physiol Biochem; 2019 Sep 01; 142():372-383. PubMed ID: 31400541
    [Abstract] [Full Text] [Related]

  • 18. Photosynthetic performance of Jatropha curcas fruits.
    Ranjan S, Singh R, Soni DK, Pathre UV, Shirke PA.
    Plant Physiol Biochem; 2012 Mar 01; 52():66-76. PubMed ID: 22305068
    [Abstract] [Full Text] [Related]

  • 19. Understanding kaolin effects on grapevine leaf and whole-canopy physiology during water stress and re-watering.
    Frioni T, Saracino S, Squeri C, Tombesi S, Palliotti A, Sabbatini P, Magnanini E, Poni S.
    J Plant Physiol; 2019 Nov 01; 242():153020. PubMed ID: 31450036
    [Abstract] [Full Text] [Related]

  • 20. Climate change conditions (elevated CO2 and temperature) and UV-B radiation affect grapevine (Vitis vinifera cv. Tempranillo) leaf carbon assimilation, altering fruit ripening rates.
    Martínez-Lüscher J, Morales F, Sánchez-Díaz M, Delrot S, Aguirreolea J, Gomès E, Pascual I.
    Plant Sci; 2015 Jul 01; 236():168-76. PubMed ID: 26025530
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.