These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


557 related items for PubMed ID: 27987699

  • 21. In vivo corrosion of 316L stainless-steel hip implants: morphology and elemental compositions of corrosion products.
    Walczak J, Shahgaldi F, Heatley F.
    Biomaterials; 1998; 19(1-3):229-37. PubMed ID: 9678872
    [Abstract] [Full Text] [Related]

  • 22. Laser surface modification of 316L stainless steel.
    Balla VK, Dey S, Muthuchamy AA, Janaki Ram GD, Das M, Bandyopadhyay A.
    J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):569-577. PubMed ID: 28245086
    [Abstract] [Full Text] [Related]

  • 23. Corrosion resistance improvement for 316L stainless steel coronary artery stents by trimethylsilane plasma nanocoatings.
    Eric Jones J, Chen M, Yu Q.
    J Biomed Mater Res B Appl Biomater; 2014 Oct; 102(7):1363-74. PubMed ID: 24500866
    [Abstract] [Full Text] [Related]

  • 24. In vivo evaluation of a high-strength, high-ductility stainless steel for use in surgical implants.
    Syrett BC, Davis EE.
    J Biomed Mater Res; 1979 Jul; 13(4):543-56. PubMed ID: 110810
    [Abstract] [Full Text] [Related]

  • 25. Corrosion protection performance of porous strontium hydroxyapatite coating on polypyrrole coated 316L stainless steel.
    Gopi D, Ramya S, Rajeswari D, Kavitha L.
    Colloids Surf B Biointerfaces; 2013 Jul 01; 107():130-6. PubMed ID: 23475060
    [Abstract] [Full Text] [Related]

  • 26. Cytocompatibility and Bone-Formation Potential of Se-Coated 316L Stainless Steel with Nano-Pit Arrays.
    Hu H, Cui R, Mei L, Ni S, Sun H, Zhang C, Ni S.
    J Biomed Nanotechnol; 2018 Apr 01; 14(4):716-724. PubMed ID: 31352945
    [Abstract] [Full Text] [Related]

  • 27. Microstructure-dependent crevice corrosion damage of implant materials CoCr28Mo6, TiAl6V4 and REX 734 under severe inflammatory conditions.
    Herbster M, Rosemann P, Michael O, Harnisch K, Ecke M, Heyn A, Lohmann CH, Bertrand J, Halle T.
    J Biomed Mater Res B Appl Biomater; 2022 Jul 01; 110(7):1687-1704. PubMed ID: 35174958
    [Abstract] [Full Text] [Related]

  • 28. In vitro surface corrosion of stainless steel and NiTi orthodontic appliances.
    Shin JS, Oh KT, Hwang CJ.
    Aust Orthod J; 2003 Apr 01; 19(1):13-8. PubMed ID: 12790351
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Effect of in site strain on passivated property of the 316L stainless steels.
    Jinlong L, Tongxiang L, Chen W, Ting G.
    Mater Sci Eng C Mater Biol Appl; 2016 Apr 01; 61():32-6. PubMed ID: 26838820
    [Abstract] [Full Text] [Related]

  • 31. Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO₂-nanotube-coated 316L stainless steel.
    Huang Q, Yang Y, Hu R, Lin C, Sun L, Vogler EA.
    Colloids Surf B Biointerfaces; 2015 Jan 01; 125():134-41. PubMed ID: 25481855
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Chemical, corrosion and topographical analysis of stainless steel implants after different implantation periods.
    Chrzanowski W, Armitage DA, Knowles JC, Szade J, Korlacki W, Marciniak J.
    J Biomater Appl; 2008 Jul 01; 23(1):51-71. PubMed ID: 18467745
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. An assessment of ultra fine grained 316L stainless steel for implant applications.
    Muley SV, Vidvans AN, Chaudhari GP, Udainiya S.
    Acta Biomater; 2016 Jan 01; 30():408-419. PubMed ID: 26518104
    [Abstract] [Full Text] [Related]

  • 36. A mechanism for the enhanced attachment and proliferation of fibroblasts on anodized 316L stainless steel with nano-pit arrays.
    Ni S, Sun L, Ercan B, Liu L, Ziemer K, Webster TJ.
    J Biomed Mater Res B Appl Biomater; 2014 Aug 01; 102(6):1297-303. PubMed ID: 24610894
    [Abstract] [Full Text] [Related]

  • 37. Electrochemical study of Type 304 and 316L stainless steels in simulated body fluids and cell cultures.
    Tang YC, Katsuma S, Fujimoto S, Hiromoto S.
    Acta Biomater; 2006 Nov 01; 2(6):709-15. PubMed ID: 16935040
    [Abstract] [Full Text] [Related]

  • 38. Studies of the corrosion susceptibility of metallic cement restrictors: comparative corrosion behavior of stainless steel and cobalt-chromium alloys.
    Pugh J, Jaffe WL, Kummer FJ.
    Bull Hosp Joint Dis; 1976 Apr 01; 37(1):40-53. PubMed ID: 974288
    [Abstract] [Full Text] [Related]

  • 39. Evaluation of the effect of three surface treatments on the biocompatibility of 316L stainless steel using human differentiated cells.
    Bordji K, Jouzeau JY, Mainard D, Payan E, Delagoutte JP, Netter P.
    Biomaterials; 1996 Mar 01; 17(5):491-500. PubMed ID: 8991480
    [Abstract] [Full Text] [Related]

  • 40. The influence of complexing agent and proteins on the corrosion of stainless steels and their metal components.
    Kocijan A, Milosev I, Pihlar B.
    J Mater Sci Mater Med; 2003 Jan 01; 14(1):69-77. PubMed ID: 15348541
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 28.