These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


733 related items for PubMed ID: 27992090

  • 1. Metal-Catalyzed Asymmetric Michael Addition in Natural Product Synthesis.
    Hui C, Pu F, Xu J.
    Chemistry; 2017 Mar 23; 23(17):4023-4036. PubMed ID: 27992090
    [Abstract] [Full Text] [Related]

  • 2. Enantioselective total syntheses of several bioactive natural products based on the development of practical asymmetric catalysis.
    Ohshima T.
    Chem Pharm Bull (Tokyo); 2004 Sep 23; 52(9):1031-52. PubMed ID: 15340187
    [Abstract] [Full Text] [Related]

  • 3. Chiral Pd-Catalyzed Enantioselective Syntheses of Various N-C Axially Chiral Compounds and Their Synthetic Applications.
    Kitagawa O.
    Acc Chem Res; 2021 Feb 02; 54(3):719-730. PubMed ID: 33481580
    [Abstract] [Full Text] [Related]

  • 4. Enantioselective organocatalytic Michael/aldol sequence: anticancer natural product (+)-trans-dihydrolycoricidine.
    McNulty J, Zepeda-Velázquez C.
    Angew Chem Int Ed Engl; 2014 Aug 04; 53(32):8450-4. PubMed ID: 24954727
    [Abstract] [Full Text] [Related]

  • 5. Palladium-catalyzed asymmetric dearomative cyclization in natural product synthesis.
    Wang Z.
    Org Biomol Chem; 2020 May 27. PubMed ID: 32459269
    [Abstract] [Full Text] [Related]

  • 6. Diphenylprolinol silyl ether catalyzed asymmetric Michael reaction of nitroalkanes and β,β-disubstituted α,β-unsaturated aldehydes for the construction of all-carbon quaternary stereogenic centers.
    Hayashi Y, Kawamoto Y, Honda M, Okamura D, Umemiya S, Noguchi Y, Mukaiyama T, Sato I.
    Chemistry; 2014 Sep 15; 20(38):12072-82. PubMed ID: 25164711
    [Abstract] [Full Text] [Related]

  • 7. Enantioselective formation of quaternary carbon stereocenters in natural product synthesis: a recent update.
    Li C, Ragab SS, Liu G, Tang W.
    Nat Prod Rep; 2020 Feb 26; 37(2):276-292. PubMed ID: 31515549
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Chiral diphosphine and monodentate phosphorus ligands on a spiro scaffold for transition-metal-catalyzed asymmetric reactions.
    Xie JH, Zhou QL.
    Acc Chem Res; 2008 May 26; 41(5):581-93. PubMed ID: 18311931
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Antibody-catalyzed asymmetric intramolecular Michael addition of aldehydes and ketones to yield the disfavored cis-product.
    Weinstain R, Lerner RA, Barbas CF, Shabat D.
    J Am Chem Soc; 2005 Sep 28; 127(38):13104-5. PubMed ID: 16173712
    [Abstract] [Full Text] [Related]

  • 17. Applications of Transition-Metal-Catalyzed Asymmetric Allylic Substitution in Total Synthesis of Natural Products: An Update.
    Mohammadkhani L, Heravi MM.
    Chem Rec; 2021 Jan 28; 21(1):29-68. PubMed ID: 33206466
    [Abstract] [Full Text] [Related]

  • 18. Development of new methods in organic synthesis and their applications to the synthesis of biologically interesting natural products.
    Hamada Y.
    Chem Pharm Bull (Tokyo); 2012 Jan 28; 60(1):1-20. PubMed ID: 22223369
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 37.